1
|
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, Singh R, Sahoo G, Ewe D, Saurav K. Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chem Res Toxicol 2023; 36:1834-1863. [PMID: 38059476 PMCID: PMC10731662 DOI: 10.1021/acs.chemrestox.3c00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Collapse
Affiliation(s)
- Vishal Ahuja
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- University
Centre for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| | - Amanpreet Singh
- Department
of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab 140413, India
| | - Debarati Paul
- Amity
Institute of Biotechnology, AUUP, Noida, Uttar Pradesh 201313, India
| | - Diptarka Dasgupta
- Material
Resource Efficiency Division, CSIR-Indian
Institute of Petroleum, Dehradun 248005, India
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Sounak Ghosh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Roshani Singh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Gobardhan Sahoo
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Daniela Ewe
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| |
Collapse
|
2
|
Berntssen MHG, Fjeldal PG, Gavaia PJ, Laizé V, Hamre K, Donald CE, Jakobsen JV, Omdal Å, Søderstrøm S, Lie KK. Dietary beauvericin and enniatin B exposure cause different adverse health effects in farmed Atlantic salmon. Food Chem Toxicol 2023; 174:113648. [PMID: 36736876 DOI: 10.1016/j.fct.2023.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The extensive use of plant ingredients in novel aquafeeds have introduced mycotoxins to the farming of seafood. The emerging enniatin B (ENNB) and beauvericin (BEA) mycotoxins have been found in the novel aquafeeds and farmed fish. Little is known about the potential toxicity of ENNs and BEA in farmed fish and their feed-to-organ transfer. Atlantic salmon (Salmo salar) pre-smolt (75.3 ± 8.10 g) were fed four graded levels of spiked chemical pure ENNB or BEA feeds for three months, in triplicate tanks. Organismal adverse health end-point assessment included intestinal function (protein digestibility), disturbed hematology (red blood cell formation), bone formation (spinal deformity), overall energy use (feed utilization), and lipid oxidative status (vitamin E). Both dietary BEA and ENNB had a low (<∼0.01%) transfer to organs (kidney > liver > brain > muscle), with a higher transfer for ENNB compared to BEA. BEA caused a growth reduction combined with a decreased protein digestion and feed conversion rate- ENNB caused a stunted growth, unrelated to feed utilization capacity. In addition, ENNB caused anemia while BEA gave an oxidative stress response. Lower bench-mark dose regression assessment showed that high background levels of ENNB in commercial salmon feed could pose a risk for animal health, but not in the case of BEA.
Collapse
Affiliation(s)
| | - P G Fjeldal
- Institute of Marine Research, Bergen, Norway
| | - P J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - V Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - K Hamre
- Institute of Marine Research, Bergen, Norway
| | - C E Donald
- Institute of Marine Research, Bergen, Norway
| | - J V Jakobsen
- Cargill Aqua Nutrition Innovation Center, Dirdal, Norway
| | - Å Omdal
- Institute of Marine Research, Bergen, Norway
| | | | - K K Lie
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
3
|
Mycotoxins in Seafood: Occurrence, Recent Development of Analytical Techniques and Future Challenges. SEPARATIONS 2023. [DOI: 10.3390/separations10030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
The co-occurrence of mycotoxigenic fungi and mycotoxins in aquatic food commodities has recently become a source of severe worldwide food insecurity since these toxicants may damage human health. The consumption of aquatic food itself represents a relatively novel and non-negligible source of mycotoxins. Mycotoxins in seafood lead to important human genotoxins, carcinogens, and immunosuppressors. Consequently, it is crucial to quantify and characterize these contaminants in aquatic food products subject to extensive consumption and develop new regulations. The present paper provides an overview of recent advancements in liquid chromatography and mass spectrometry and the coupling of these techniques for identifying and characterizing mycotoxins in various fresh, comestible, and treated marine products. The disposable data display that a multiplicity of fungal species and further mycotoxins have been detected in seafood, comprising aflatoxins, ochratoxins, fumonisins, deoxynivalenol, zearalenone, and trichothecenes. In addition, a wider and up-to-date overview of global occurrence surveys of mycotoxin occurrence in seafood in 2017–2022 is explored. In this regard, the predominant occurrence of enniatins has been documented in seafood products. Likewise, special attention has been given to current EU seafood legal and existing national regulations of mycotoxins in seafood. In this way, rigorous national and international guidelines are needed for palpable and effective measures in the future. Nevertheless, controlling mycotoxins in aquatic foods is an ambitious aim for scientists and industry stakeholders to ensure sustainable global food safety.
Collapse
|
4
|
Vardali S, Papadouli C, Rigos G, Nengas I, Panagiotaki P, Golomazou E. Recent Advances in Mycotoxin Determination in Fish Feed Ingredients. Molecules 2023; 28:2519. [PMID: 36985489 PMCID: PMC10053411 DOI: 10.3390/molecules28062519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Low-cost plant-based sources used in aquaculture diets are prone to the occurrence of animal feed contaminants, which may in certain conditions affect the quality and safety of aquafeeds. Mycotoxins, a toxic group of small organic molecules produced by fungi, comprise a frequently occurring plant-based feed contaminant in aquafeeds. Mycotoxin contamination can potentially cause significant mortality, reduced productivity, and higher disease susceptibility; thus, its timely detection is crucial to the aquaculture industry. The present review summarizes the methodological advances, developed mainly during the past decade, related to mycotoxin detection in aquafeed ingredients, namely analytical, chromatographic, and immunological methodologies, as well as the use of biosensors and spectroscopic methods which are becoming more prevalent. Rapid and accurate mycotoxin detection is and will continue to be crucial to the food industry, animal production, and the environment, resulting in further improvements and developments in mycotoxin detection techniques.
Collapse
Affiliation(s)
- Sofia Vardali
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Christina Papadouli
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - George Rigos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, 19013 Attiki, Greece
| | - Ioannis Nengas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, 19013 Attiki, Greece
| | - Panagiota Panagiotaki
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Eleni Golomazou
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
5
|
Giannioti Z, Albero B, Hernando MD, Bontempo L, Pérez RA. Determination of Regulated and Emerging Mycotoxins in Organic and Conventional Gluten-Free Flours by LC-MS/MS. Toxins (Basel) 2023; 15:155. [PMID: 36828469 PMCID: PMC9966797 DOI: 10.3390/toxins15020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Gluten-free cereal products have grown in popularity in recent years as they are perceived as "healthier" alternatives and can be safely consumed by celiac patients, and people with gluten intolerance or wheat allergies. Molds that produce mycotoxins contaminate cereal crops, posing a threat to global food security. Maximum levels have been set for certain mycotoxins in cereal flours; however, little is known about the levels of emerging mycotoxins in these flours. The aim of this study was to develop an efficient, sensitive, and selective method for the detection of four emerging (beauvericin and enniatins A1, B, and B1) and three regulated (aflatoxin B1, zearalenone, and deoxynivalenol) mycotoxins in gluten-free flours. Ultrasound-assisted matrix solid-phase dispersion was used in the extraction of these mycotoxins from flour samples. The validated method was utilized for the LC-MS/MS analysis of conventional and organic wholegrain oat and rice flours. Six of the seven target mycotoxins were detected in these samples. Multi-mycotoxin contamination was found in all flour types, particularly in conventional wholegrain oat flour. Despite the low detection frequency in rice flour, one sample was found to contain zearalenone at a concentration of 83.2 μg/kg, which was higher than the level set by the European Commission for cereal flours. The emerging mycotoxins had the highest detection frequencies; enniatin B was present in 53% of the samples at a maximum concentration of 56 μg/kg, followed by enniatin B1 and beauvericin, which were detected in 46% of the samples, and at levels reaching 21 μg/kg and 10 μg/kg, respectively. These results highlight the need to improve the current knowledge and regulations on the presence of mycotoxins, particularly emerging ones, in gluten-free flours and cereal-based products.
Collapse
Affiliation(s)
- Zoe Giannioti
- Traceability Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, TN, Italy
- Centre for Agriculture, Food and Environment (C3A), University of Trento and Fondazione Edmund Mach Via E. Mach 1, 38098 San Michele all’Adige, TN, Italy
| | - Beatriz Albero
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - María Dolores Hernando
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Luana Bontempo
- Traceability Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, TN, Italy
| | - Rosa Ana Pérez
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
6
|
Liu Y, Jin Y, Guo Q, Wang X, Luo S, Yang W, Li J, Chen Y. Immunoaffinity Cleanup and Isotope Dilution-Based Liquid Chromatography Tandem Mass Spectrometry for the Determination of Six Major Mycotoxins in Feed and Feedstuff. Toxins (Basel) 2022; 14:toxins14090631. [PMID: 36136569 PMCID: PMC9503004 DOI: 10.3390/toxins14090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of deoxynivalenol, aflatoxin B1, zearalenone, ochratoxin A, T-2 toxin and fumonisin B1 in feed and feedstuff was established. The sample was extracted with an acetonitrile–water mixture (60:40, v/v), purified by an immunoaffinity column, eluted with a methanol–acetic acid mixture (98:2, v/v), and reconstituted with a methanol–water mixture (50:50, v/v) after drying with nitrogen. Finally, the reconstituted solution was detected by LC-MS/MS and quantified by isotope internal standard method. The six mycotoxins had a good linear relationship in a certain concentration range, the correlation coefficients were all greater than 0.99, the limits of detection were between 0.075 and 1.5 µg·kg−1, and the limits of quantification were between 0.5 and 5 µg·kg−1. The average spike recoveries in the four feed matrices ranged from 84.2% to 117.1% with relative standard deviations less than 11.6%. Thirty-six actual feed samples were analyzed for mycotoxins, and at least one mycotoxin was detected in each sample. The proposed method is reliable and suitable for detecting common mycotoxins in feed samples.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi Guo
- Clover Technology Group Inc., Beijing 100044, China
| | - Xiong Wang
- Clover Technology Group Inc., Beijing 100044, China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjun Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Juntao Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (J.L.); (Y.C.)
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (J.L.); (Y.C.)
| |
Collapse
|