1
|
Strohm VR, Ayache N, Millette NC, Menegay A, Gobler CJ, Campbell L, Smith JL. Role of turbulence in Dinophysis spp. growth, feeding, and toxin leakage in culture. HARMFUL ALGAE 2024; 137:102666. [PMID: 39003026 DOI: 10.1016/j.hal.2024.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 07/15/2024]
Abstract
Dinophysis, a mixotrophic dinoflagellate that is known to prey on the ciliate Mesodinium rubrum, and retain its chloroplasts, is responsible for diarrhetic shellfish poisoning (DSP) in humans and has been identified on all U.S. coasts. Monocultures of Dinophysis have been used to investigate the growth of Dinophysis species in response to variations in environmental conditions, however, little is known about the roles of system stability (turbulence) and mixotrophy in the growth and toxicity of Dinophysis species in the U.S.. To begin to address this gap in knowledge, culturing experiments were conducted with three species (four strains) of Dinophysis, that included predator-prey co-incubation (Dinophysis spp.+ M. rubrum) and prey-only (M. rubrum) flasks. Cultures were investigated for effects of low or high turbulence on Dinophysis spp. growth, feeding, and amounts of intra- and extracellular toxins: okadaic acid and derivatives (diarrhetic shellfish toxins, DSTs) and pectenotoxins (PTXs). Turbulence did not have a measurable effect on the rates of ingestion of M. rubrum prey by Dinophysis spp. for any of the four strains, however, effects on growth and particulate and dissolved toxins were observed. High turbulence (ε = 10-2 m2s-3) significantly slowed growth of both D. acuminata and D. ovum relative to still controls, but significantly stimulated growth of the D. caudata strain. Increasing turbulence also resulted in significantly higher intracellular toxin content in D. acuminata cultures (DSTs and PTXs), but significantly reduced intracellular toxin content (PTXs) in those of D. caudata. An increase in turbulence appeared to promote toxin leakage, as D. ovum had significantly more extracellular DSTs found in the medium under high turbulence when compared to the still control. Overall, significant responses to turbulence were observed, whereby the three strains from the "Dinophysis acuminata complex" displayed a stress response to turbulence, i.e., decreasing growth, increasing intracellular toxin content and/or increasing toxin leakage, while the D. caudata strain had an opposite response, appearing stimulated by, or more tolerant of, high turbulence.
Collapse
Affiliation(s)
- Vanessa R Strohm
- Virginia Institute of Marine Science, William & Mary, 1375 Greate Road, Gloucester Point, VA, USA 23062
| | - Nour Ayache
- Virginia Institute of Marine Science, William & Mary, 1375 Greate Road, Gloucester Point, VA, USA 23062
| | - Nicole C Millette
- Virginia Institute of Marine Science, William & Mary, 1375 Greate Road, Gloucester Point, VA, USA 23062
| | - Amy Menegay
- Virginia Institute of Marine Science, William & Mary, 1375 Greate Road, Gloucester Point, VA, USA 23062
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY 11968, USA
| | - Lisa Campbell
- Department of Oceanography, Texas A&M University, College Station, TX 77843 USA
| | - Juliette L Smith
- Virginia Institute of Marine Science, William & Mary, 1375 Greate Road, Gloucester Point, VA, USA 23062.
| |
Collapse
|
2
|
Ayache N, Campbell L, Gobler CJ, Smith JL. Photoacclimation and photophysiology of four species of toxigenic Dinophysis. HARMFUL ALGAE 2024; 136:102624. [PMID: 38876524 DOI: 10.1016/j.hal.2024.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 06/16/2024]
Abstract
This study aimed to explore the effects of different light intensities on the ecophysiology of eight new Dinophysis isolates comprising four species (D. acuminata, D. ovum, D. fortii, and D. caudata) collected from different geographical regions in the US. After six months of acclimation, the growth rates, photosynthetic efficiency (Fv/Fm ratio), toxin content, and net toxin production rates of the Dinophysis strains were examined. The growth rates of D. acuminata and D. ovum isolates were comparable across light intensities, with the exception of one D. acuminata strain (DANY1) that was unable to grow at the lowest light intensity. However, D. fortii and D. caudata strains were photoinhibited and grew at a slower rate at the highest light intensity, indicating a lower degree of adaptability and tolerance to such conditions. Photosynthetic efficiency was similar for all Dinophysis isolates and negatively correlated with exposure to high light intensities. Multiple toxin metrics, including cellular toxin content and net production rates of DSTs and PTXs, were variable among species and even among isolates of the same species in response to light intensity. A pattern was detected, however, whereby the net production rates of PTXs were significantly lower across all Dinophysis isolates when exposed to the lowest light intensity. These findings provide a basis for understanding the effects of light intensity on the eco-physiological characteristics of Dinophysis species in the US and could be employed to develop integrated physical-biological models for species and strains of interest to predict their population dynamics and mitigate their negative effects.
Collapse
Affiliation(s)
- Nour Ayache
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Lisa Campbell
- Department of Oceanography and Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY 11968, USA
| | - Juliette L Smith
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA.
| |
Collapse
|
3
|
Nieves MG, Díaz PA, Araya M, Salgado P, Rojas R, Quiroga E, Pizarro G, Álvarez G. Effects of the toxic dinoflagellate Protoceratium reticulatum and its yessotoxins on the survival and feed ingestion of Argopecten purpuratus veliger larvae. MARINE POLLUTION BULLETIN 2024; 199:116022. [PMID: 38211543 DOI: 10.1016/j.marpolbul.2023.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
The effects of yessotoxins (YTXs) produced by the dinoflagellate Protoceratium reticulatum in the early stages of bivalves have not been studied in detail. The present study evaluates the effects of P. reticulatum and YTXs on the survival and feed ingestion of veliger larvae of Argopecten purpuratus. Larvae were 96 h-exposed to 500, 1000 and 2000 P. reticulatum cells mL-1, and their equivalent YTX extract was prepared in methanol. Results show a survival mean of 82 % at the highest density of dinoflagellate, and 38 % for larvae with the highest amount of YTX extract. Feed ingestion is reduced in the dinoflagellate exposure treatments as a function of cell density. Therefore, the effect of YTXs on A. purpuratus represents a new and important area of study for investigations into the deleterious effects of these toxins in the early stages of the life cycle of this and, potentially, other bivalves.
Collapse
Affiliation(s)
- María Gabriela Nieves
- Programa de Doctorado en Acuicultura, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Patricio A Díaz
- Centro i∼mar & CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Pablo Salgado
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Enrique Abello 0552, Casilla 101, Punta Arenas, Chile
| | - Rodrigo Rojas
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1281, Chile
| | - Eduardo Quiroga
- Pontificia Universidad Católica de Valparaíso, Escuela de Ciencias del Mar, Avenida Universidad 330, Curauma, Valparaíso, Chile
| | - Gemita Pizarro
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Enrique Abello 0552, Casilla 101, Punta Arenas, Chile
| | - Gonzalo Álvarez
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1281, Chile; Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.
| |
Collapse
|
4
|
Pease SK, Egerton TA, Reece KS, Sanderson MP, Onofrio MD, Yeargan E, Wood A, Roach A, Huang ISW, Scott GP, Place AR, Hayes AM, Smith JL. Co-occurrence of marine and freshwater phycotoxins in oysters, and analysis of possible predictors for management. Toxicon X 2023; 19:100166. [PMID: 37448555 PMCID: PMC10336265 DOI: 10.1016/j.toxcx.2023.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Oysters (Crassostrea virginica) were screened for 12 phycotoxins over two years in nearshore waters to collect baseline phycotoxin data and to determine prevalence of phycotoxin co-occurrence in the commercially and ecologically-relevant species. Trace to low concentrations of azaspiracid-1 and -2 (AZA1, AZA2), domoic acid (DA), okadaic acid (OA), and dinophysistoxin-1 (DTX1) were detected, orders of magnitude below seafood safety action levels. Microcystins (MCs), MC-RR and MC-YR, were also found in oysters (maximum: 7.12 μg MC-RR/kg shellfish meat wet weight), warranting consideration of developing action levels for freshwater phycotoxins in marine shellfish. Oysters contained phycotoxins that impair shellfish health: karlotoxin1-1 and 1-3 (KmTx1-1, KmTx1-3), goniodomin A (GDA), and pectenotoxin-2 (PTX2). Co-occurrence of phycotoxins in oysters was common (54%, n = 81). AZAs and DA co-occurred most frequently of the phycotoxins investigated that are a concern for human health (n = 13) and PTX2 and KmTxs co-occurred most frequently amongst the phycotoxins of concern for shellfish health (n = 9). Various harmful algal bloom (HAB) monitoring methods and tools were assessed for their effectiveness at indicating levels of phycotoxins in oysters. These included co-deployed solid phase adsorption toxin tracking (SPATT) devices, toxin levels in particulate organic matter (POM, >1.5 μm) and whole water samples and cell concentrations from water samples as determined by microscopy and quantitative real-time PCR (qPCR). The dominant phycotoxin varied between SPATTs and all other phycotoxin sample types, and out of the 11 phycotoxins detected in oysters, only four and seven were detected in POM and whole water respectively, indicating phycotoxin profile mismatch between ecosystem compartments. Nevertheless, there were correlations between DA in oysters and whole water (simple linear regression [LR]: R2 = 0.6, p < 0.0001, n = 40), and PTX2 in oysters and SPATTs (LR: R2 = 0.3, p = 0.001, n = 36), providing additional monitoring tools for these phycotoxins, but oyster samples remain the best overall indicators of seafood safety.
Collapse
Affiliation(s)
- Sarah K.D. Pease
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Todd A. Egerton
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - Kimberly S. Reece
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Marta P. Sanderson
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Michelle D. Onofrio
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Evan Yeargan
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - Adam Wood
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - Amanda Roach
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - I-Shuo Wade Huang
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Gail P. Scott
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Allen R. Place
- Institute of Marine and Environmental Technology, University of Maryland, Center for Environmental Sciences, Baltimore, MD, 21202, USA
| | - Amy M. Hayes
- Public Health Toxicology Program, Virginia Department of Health, Richmond, VA, 23219, USA
| | - Juliette L. Smith
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| |
Collapse
|
5
|
Díaz PA, Álvarez G, Figueroa RI, Garreaud R, Pérez-Santos I, Schwerter C, Díaz M, López L, Pinto-Torres M, Krock B. From lipophilic to hydrophilic toxin producers: Phytoplankton succession driven by an atmospheric river in western Patagonia. MARINE POLLUTION BULLETIN 2023; 193:115214. [PMID: 37385183 DOI: 10.1016/j.marpolbul.2023.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Phytoplankton succession is related to hydroclimatic conditions. In this study we provide the first description of a toxic phytoplankton succession in the Patagonian Fjord System. The shift was modulated by atmospheric-oceanographic forcing and consisted of the replacement of the marine dinoflagellate Dinophysis acuta in a highly stratified water column during austral summer by the diatom Pseudo-nitzschia calliantha in a mixed water column during late summer and early autumn. This transition, accompanied by a change in the biotoxin profiles (from lipophilic dinophysis toxins to hydrophilic domoic acid), was induced by the arrival of an intense atmospheric river. The winds in Magdalena Sound may have been further amplified, due to its west-east orientation and its location within a tall, narrow mountain canyon. This work also documents the first known appearance of toxic P. calliantha in Northern Patagonian. The potential impacts of the biotoxins of this species on higher trophic levels are discussed.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1281, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Vigo, Spain
| | - René Garreaud
- Centro de Ciencia del Clima y la Resiliencia (CR2), Universidad de Chile, Chile; Departamento de Geofísica, Universidad de Chile, Santiago 8370449, Región Metropolitana, Chile
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile; Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Camila Schwerter
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Manuel Díaz
- Instituto de Acuicultura, Programa de Investigación Pesquera, Universidad Austral de Chile, Los Pinos S/N, Puerto Montt, Chile
| | - Loreto López
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt, Chile
| | - Marco Pinto-Torres
- Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Los Pinos S/N, Puerto Montt, Chile; Centro FONDAP de Investigación de Ecosistemas de Altas Latitudes (IDEAL), Universidad Austral de Chile, Av. El Bosque 01789, Punta Arenas, Chile
| | - Bernd Krock
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile; Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
6
|
Ayache N, Bill BD, Brosnahan ML, Campbell L, Deeds JR, Fiorendino JM, Gobler CJ, Handy SM, Harrington N, Kulis DM, McCarron P, Miles CO, Moore SK, Nagai S, Trainer VL, Wolny JL, Young CS, Smith JL. A survey of Dinophysis spp. and their potential to cause diarrhetic shellfish poisoning in coastal waters of the United States. JOURNAL OF PHYCOLOGY 2023; 59:658-680. [PMID: 36964950 DOI: 10.1111/jpy.13331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Multiple species of the genus Dinophysis produce diarrhetic shellfish toxins (okadaic acid and Dinophysis toxins, OA/DTXs analogs) and/or pectenotoxins (PTXs). Only since 2008 have DSP events (illnesses and/or shellfish harvesting closures) become recognized as a threat to human health in the United States. This study characterized 20 strains representing five species of Dinophysis spp. isolated from three US coastal regions that have experienced DSP events: the Northeast/Mid-Atlantic, the Gulf of Mexico, and the Pacific Northwest. Using a combination of morphometric and DNA-based evidence, seven Northeast/Mid-Atlantic isolates and four Pacific Northwest isolates were classified as D. acuminata, a total of four isolates from two coasts were classified as D. norvegica, two isolates from the Pacific Northwest coast were identified as D. fortii, and three isolates from the Gulf of Mexico were identified as D. ovum and D. caudata. Toxin profiles of D. acuminata and D. norvegica varied by their geographical origin within the United States. Cross-regional comparison of toxin profiles was not possible with the other three species; however, within each region, distinct species-conserved profiles for isolates of D. fortii, D. ovum, and D. caudata were observed. Historical and recent data from various State and Tribal monitoring programs were compiled and compared, including maximum recorded cell abundances of Dinophysis spp., maximum concentrations of OA/DTXs recorded in commercial shellfish species, and durations of harvesting closures, to provide perspective regarding potential for DSP impacts to regional public health and shellfish industry.
Collapse
Affiliation(s)
- Nour Ayache
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, 23062, USA
| | - Brian D Bill
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, USA
| | - Michael L Brosnahan
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
| | - Lisa Campbell
- Department of Oceanography and Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
- Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
| | - Jonathan R Deeds
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, 20740, USA
| | - James M Fiorendino
- Department of Oceanography and Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, 11968, USA
| | - Sara M Handy
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, 20740, USA
| | - Neil Harrington
- Department of Natural Resources, Jamestown S'Klallam Tribe, Sequim, Washington, 98382, USA
| | - David M Kulis
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Stephanie K Moore
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, USA
| | - Satoshi Nagai
- Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Vera L Trainer
- Olympic Natural Resources Center, School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, Washington, 98195, USA
| | - Jennifer L Wolny
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, 20740, USA
| | - Craig S Young
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, 11968, USA
| | - Juliette L Smith
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, 23062, USA
| |
Collapse
|
7
|
Velasco-Senovilla E, Díaz PA, Nogueira E, Rodríguez F, Garrido JL, Ruiz-Villarreal M, Reguera B. The niche of a stress-tolerant specialist, Dinophysis acuminata, in a coastal upwelling system. HARMFUL ALGAE 2023; 125:102427. [PMID: 37220979 DOI: 10.1016/j.hal.2023.102427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 05/25/2023]
Abstract
Dinophysis acuminata, the main cause of shellfish harvesting bans in Europe, blooms in the Galician Rías (NW Spain) throughout the upwelling season (ca. March to September). Here we illustrate rapid changes in vertical and across ría-shelf distributions of diatoms and dinoflagellates (including D. acuminata vegetative and small cells) in Ría de Pontevedra (RP) and Ría de Vigo (RV) during transitions from spin-down to spin-up phases of upwelling cycles. A subniche approach based on a Within Outlying Mean Index (WitOMI) showed that under the transient environmental conditions met during the cruise, both vegetative and small cells of D. acuminata colonized the Ria and Mid-shelf subniches, exhibiting good tolerance and extremely high marginality, in particular the small cells. Bottom-up (abiotic) control overwhelmed biological constraints, and shelf waters became a more favourable environment than the Rías. Contrasting higher biotic constraints inside the Rías were found for the small cells, with a subniche possibly controlled by unsuitable physiological status (notwithstanding the higher density) of the vegetative cell population. Results here on behaviour (vertical positioning) and physiological traits (high tolerance but very specialized niche) of D. acuminata give new insights into the ability of this species to remain in the upwelling circulation system. Higher shelf-ría exchanges in the Ría (RP) with more dense and persistent D. acuminata blooms reveal the relevance of transient event-scales and species- and site-specific characteristics to the fate of these blooms. Earlier statements about simple linear relationships between average upwelling intensities and the recurrence of Harmful algae bloom (HAB) events in the Galician Rías Baixas are questioned.
Collapse
Affiliation(s)
- Esther Velasco-Senovilla
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro 50, Vigo, 36390, Spain; Campus do Mar, Facultad de Ciencias del Mar, Universidad de Vigo, 36311 Vigo, Spain.
| | - Patricio A Díaz
- Centro i∼mar & CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Enrique Nogueira
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro 50, Vigo, 36390, Spain
| | - Francisco Rodríguez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro 50, Vigo, 36390, Spain
| | - José L Garrido
- Department of Oceanography, Instituto de Investigaciones Marinas (IIM, CSIC), Vigo, Spain
| | - Manuel Ruiz-Villarreal
- Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO), CSIC, P.° Marítimo Alcalde Francisco Vázquez 10, 15001, A Coruña, Spain
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro 50, Vigo, 36390, Spain
| |
Collapse
|
8
|
Dorantes-Aranda JJ. Harmful Algae Impacting Aquatic Organisms: Recent Field and Laboratory Observations. Toxins (Basel) 2023; 15:toxins15050339. [PMID: 37235374 DOI: 10.3390/toxins15050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Algal blooms formed by some phytoplankton species can produce toxins or alter environmental conditions that can affect aquatic organisms and water quality, with impacts on the aquaculture and fisheries industries that can pose a risk to public health [...].
Collapse
|
9
|
Gaillard S, Réveillon D, Mason PL, Ayache N, Sanderson M, Smith JL, Giddings S, McCarron P, Séchet V, Hégaret H, Hess P, Vogelbein WK. Mortality and histopathology in sheepshead minnow (Cyprinodon variegatus) larvae exposed to pectenotoxin-2 and Dinophysis acuminata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106456. [PMID: 36889127 DOI: 10.1016/j.aquatox.2023.106456] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Toxic species of the dinoflagellate genus Dinophysis can produce diarrheic toxins including okadaic acid (OA) and dinophysistoxins (DTXs), and the non-diarrheic pectenotoxins (PTXs). Okadaic acid and DTXs cause diarrheic shellfish poisoning (DSP) in human consumers, and also cause cytotoxic, immunotoxic and genotoxic effects in a variety of mollusks and fishes at different life stages in vitro. The possible effects of co-produced PTXs or live cells of Dinophysis to aquatic organisms, however, are less understood. Effects on an early life stage of sheepshead minnow (Cyprinodon variegatus), a common finfish in eastern USA estuaries, were evaluated using a 96-h toxicity bioassay. Three-week old larvae were exposed to PTX2 concentrations from 50 to 4000 nM, live Dinophysis acuminata culture (strain DAVA01), live cells resuspended in clean medium or culture filtrate. This D. acuminata strain produced mainly intracellular PTX2 (≈ 21 pg cell-1), with much lower levels of OA and dinophysistoxin-1. No mortality or gill damages were observed in larvae exposed to D. acuminata (from 5 to 5500 cells mL-1), resuspended cells and culture filtrate. However, exposure to purified PTX2 at intermediate to high concentrations (from 250 to 4000 nM) resulted in 8 to 100% mortality after 96 h (24-h LC50 of 1231 nM). Histopathology and transmission electron microscopy of fish exposed to intermediate to high PTX2 concentrations revealed important gill damage, including intercellular edema, necrosis and sloughing of gill respiratory epithelia, and damage to the osmoregulatory epithelium, including hypertrophy, proliferation, redistribution and necrosis of chloride cells. Tissue damage in gills is likely caused by the interaction of PTX2 with the actin cytoskeleton of the affected gill epithelia. Overall, the severe gill pathology observed following the PTX2 exposure suggested death was due to loss of respiratory and osmoregulatory functions in C. variegatus larvae.
Collapse
Affiliation(s)
- S Gaillard
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America; IFREMER, PHYTOX unit, F-44000 Nantes, France.
| | - D Réveillon
- IFREMER, PHYTOX unit, F-44000 Nantes, France
| | - P L Mason
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America
| | - N Ayache
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America
| | - M Sanderson
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America
| | - J L Smith
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America
| | - S Giddings
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - P McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - V Séchet
- IFREMER, PHYTOX unit, F-44000 Nantes, France
| | - H Hégaret
- Laboratoire des Sciences de l'Environnement Marin (UMR6539 CNRS/UBO/IFREMER/IRD), Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Plouzané 29280, France
| | - P Hess
- IFREMER, PHYTOX unit, F-44000 Nantes, France
| | - W K Vogelbein
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America
| |
Collapse
|
10
|
Baldrich ÁM, Díaz PA, Álvarez G, Pérez-Santos I, Schwerter C, Díaz M, Araya M, Nieves MG, Rodríguez-Villegas C, Barrera F, Fernández-Pena C, Arenas-Uribe S, Navarro P, Reguera B. Dinophysis acuminata or Dinophysis acuta: What Makes the Difference in Highly Stratified Fjords? Mar Drugs 2023; 21:md21020064. [PMID: 36827105 PMCID: PMC9966155 DOI: 10.3390/md21020064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Dinophysis acuminata and D. acuta, which follows it seasonally, are the main producers of lipophilic toxins in temperate coastal waters, including Southern Chile. Strains of the two species differ in their toxin profiles and impacts on shellfish resources. D. acuta is considered the major cause of diarrhetic shellfish poisoning (DSP) outbreaks in Southern Chile, but there is uncertainty about the toxicity of D. acuminata, and little information on microscale oceanographic conditions promoting their blooms. During the austral summer of 2020, intensive sampling was carried out in two northern Patagonian fjords, Puyuhuapi (PUY) and Pitipalena (PIT), sharing D. acuminata dominance and D. acuta near detection levels. Dinophysistoxin 1 (DTX 1) and pectenotoxin 2 (PTX 2) were present in all net tow samples but OA was not detected. Although differing in hydrodynamics and sampling dates, D. acuminata shared behavioural traits in the two fjords: cell maxima (>103 cells L-1) in the interface (S ~ 21) between the estuarine freshwater (EFW)) and saline water (ESW) layers; and phased-cell division (µ = 0.3-0.4 d-1) peaking after dawn, and abundance of ciliate prey. Niche analysis (Outlying Mean Index, OMI) of D. acuta with a high marginality and much lower tolerance than D. acuminata indicated an unfavourable physical environment for D. acuta (bloom failure). Comparison of toxin profiles and Dinophysis niches in three contrasting years in PUY-2020 (D. acuminata bloom), 2018 (exceptional bloom of D. acuta), and 2019 (bloom co-occurrence of the two species)-shed light on the vertical gradients which promote each species. The presence of FW (S < 11) and thermal inversion may be used to provide short-term forecasts of no risk of D. acuta blooms and OA occurrence, but D. acuminata associated with DTX 1 pose a risk of DSP events in North Patagonian fjords.
Collapse
Affiliation(s)
- Ángela M. Baldrich
- Programa de Doctorado en Ciencias, Universidad de Los Lagos, Camino Chinquihue Km 6, Puerto Montt 5480000, Chile
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
- CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Patricio A. Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
- CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
- Centro de Investigación Oceanográfica COPAS Sur-Austral y COPAS COASTAL, Universidad de Concepción, Concepción 4030000, Chile
- Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique 5950000, Chile
| | - Camila Schwerter
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Manuel Díaz
- Programa de Investigación Pesquera, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Puerto Montt 5480000, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - María Gabriela Nieves
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Camilo Rodríguez-Villegas
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
- CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Facundo Barrera
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), Houssay 200, Ushuaia 9410, Argentina
| | - Concepción Fernández-Pena
- Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO-CSIC), 15001 A Coruña, Spain
| | - Sara Arenas-Uribe
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Pilar Navarro
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
- Correspondence:
| |
Collapse
|