1
|
Production of (10S,11S)-(—)-epi-Pyriculol and Its HPLC Quantification in Liquid Cultures of Pyricularia grisea, a Potential Mycoherbicide for the Control of Buffelgrass (Cenchrus ciliaris). J Fungi (Basel) 2023; 9:jof9030316. [PMID: 36983484 PMCID: PMC10056936 DOI: 10.3390/jof9030316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
(10S,11S)-(—)-epi-pyriculol is a phytotoxic metabolite produced by Pyricularia grisea, a fungus identified as a foliar pathogen on the invasive weed species buffelgrass (Cenchrus ciliaris) in North America. The effective control of buffelgrass has not yet been achieved, and there is a need to develop effective and green solutions. Herbicides based on natural products and the use of phytopathogenic organisms could provide the most suitable tools for the control of weeds such as buffelgrass. Thus, one of the most relevant points to study about potential suitable phytotoxins such as (10S,11S)-(—)-epi-pyriculol is its production on a large scale, either by isolation from fungal fermentations or by synthesis. For these purposes, rapid and sensitive methods for the quantification of (10S,11S)-(—)-epi-pyriculol in complex mixtures are required. In this study, a high-pressure liquid chromatography (HPLC) method for its quantification was developed and applied to organic extracts from twelve P. grisea isolates obtained from diseased buffelgrass leaves and grown in potato dextrose broth (PDB) liquid cultures. The analysis proved that the production of (10S,11S)-(—)-epi-pyriculol is fungal-isolate dependent and strongly correlated with phytotoxic activity, shown by the P. grisea organic extracts in a buffelgrass radicle elongation test. The HPLC method reported herein allowed us to select the best strain for the production of (10S,11S)-(—)-epi-pyriculol and could be useful for selecting the best cultural conditions for its mass production, providing a tool for the use of this promising metabolite as a new bioherbicide for the control of buffelgrass.
Collapse
|
2
|
Peralta AC, Soriano G, Zorrilla JG, Masi M, Cimmino A, Fernández-Aparicio M. Characterization of Conyza bonariensis Allelochemicals against Broomrape Weeds. Molecules 2022; 27:7421. [PMID: 36364247 PMCID: PMC9654463 DOI: 10.3390/molecules27217421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 04/12/2024] Open
Abstract
The study of allelopathic activity of plants and the isolation and characterization of the responsible allelochemicals can lead to the development of environment friendly alternative approaches to weed control. Conyza species are invasive weeds that use allelopathic activity as part of a successful strategy to outcompete neighboring plants. Broomrape weeds are parasitic plants that use host-induced germination and the formation of a haustorium as strategies to infect host plants. The control of broomrape infection in most affected crops is limited or non-existing. In the current study, we investigated the allelopathic activity of Conyza bonariensis organic extracts in suicidal germination and radicle growth of four broomrape species (Orobanche crenata, Orobanche cumana, Orobanche minor and Phelipanche ramosa). A bioactivity-driven fractionation of Conyza bonariensis extracts led to the identification of two germination-inducing molecules and two growth-inhibitory compounds. The germination-inducing metabolites had species-specific activity being hispidulin active on seeds of O. cumana and methyl 4-hydroxybenzoate active in P. ramosa. The growth-inhibitory metabolites (4Z)-lachnophyllum lactone and (4Z,8Z)-matricaria lactone strongly inhibited the radicle growth of all parasitic weed species studied. Some structure-activity relationships were found as result of the study herein presented.
Collapse
Affiliation(s)
- Antonio Cala Peralta
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
| | - Gabriele Soriano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Jesús G. Zorrilla
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Mónica Fernández-Aparicio
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|