Okui N, Ikegami T, Hashimoto T, Kouno Y, Nakano K, Okui MA. Predictive Factors for High Post-void Residual Volume in Older Females After OnabotulinumA Treatment for Severe Overactive Bladder Using a Machine Learning Model.
Cureus 2023;
15:e42668. [PMID:
37525863 PMCID:
PMC10387135 DOI:
10.7759/cureus.42668]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2023] [Indexed: 08/02/2023] Open
Abstract
Introduction Intravesical onabotulinumA injection is actively used for the treatment of overactive bladder (OAB). However, it occasionally results in significant post-void residual urine (PVR) volume, which can lead to complications and can further impair the activities of daily living in older people. Therefore, this study aimed to identify the predictors of a high post-onabotulinumA injection PVR volume in older women with severe OAB. Methods An observational study was conducted on older women who had previously received intravesical onabotulinumA injections to treat OAB between 2020 and 2022. Urodynamic studies and symptom assessments were conducted, and machine learning models, including random forest and support vector machine (SVM) models, were developed using the R code generated by Chat Generative Pre-trained Transformer 4 (ChatGPT, OpenAI, San Francisco, USA). Results Among 128 patients with OAB, 23 (18.0%) had a PVR volume of > 200 mL after receiving onabotulinumA injections. The factors associated with a PVR volume of > 200 mL were investigated using univariate and multivariate analyses. Age, frailty, OAB-wet, daytime frequency, and nocturia were significant predictors. Random forest analysis highlighted daytime frequency, frailty, and voiding efficiency as important factors. An SVM model incorporating daytime frequency, frailty, and voiding efficiency improved PVR volume prediction. Logit(p) estimation yielded an area under the receiver operating characteristic curve of 0.926294. Conclusion The study found daytime frequency, frailty, and voiding inefficiency to be significant factors associated with a PVR volume of > 200 mL, in older women with severe OAB. Utilizing advanced machine learning techniques and following the guidance of ChatGPT, this research emphasizes the relevance of considering multiple intersecting factors for predicting PVR volume. The findings contribute to our understanding of onabotulinumA injection treatment for OAB and support evidence-based decision-making using readily available information.
Collapse