1
|
Li Y, Chen S, Yu Z, Yao J, Jia Y, Liao C, Chen J, Wei Y, Guo R, He L, Ding K. A Novel Bacillus Velezensis for Efficient Degradation of Zearalenone. Foods 2024; 13:530. [PMID: 38397507 PMCID: PMC10888444 DOI: 10.3390/foods13040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Zearalenone (ZEN) is considered one of the most serious mycotoxins contaminating grains and their by-products, causing significant economic losses in the feed and food industries. Biodegradation pathways are currently considered the most efficient solution to remove ZEN contamination from foods. However, low degradation rates and vulnerability to environmental impacts limit the application of biodegradation pathways. Therefore, the main research objective of this article was to screen strains that can efficiently degrade ZEN and survive under harsh conditions. This study successfully isolated a new strain L9 which can efficiently degrade ZEN from 108 food ingredients. The results of sequence alignment showed that L9 is Bacillus velezensis. Meanwhile, we found that the L9 degradation rate reached 91.14% at 24 h and confirmed that the primary degradation mechanism of this strain is biodegradation. The strain exhibits resistance to high temperature, acid, and 0.3% bile salts. The results of whole-genome sequencing analysis showed that, it is possible that the strain encodes the key enzyme, such as chitinase, carboxylesterases, and lactone hydrolase, that work together to degrade ZEN. In addition, 227 unique genes in this strain are primarily involved in its replication, recombination, repair, and protective mechanisms. In summary, we successfully excavated a ZEN-degrading, genetically distinct strain of Bacillus velezensis that provides a solid foundation for the detoxification of feed and food contamination in the natural environment.
Collapse
Affiliation(s)
- Yijia Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Songbiao Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| | - Zuhua Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Yao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yanyan Jia
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jian Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ying Wei
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Rongxian Guo
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Ding
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (S.C.); (Z.Y.); (J.Y.); (Y.J.); (C.L.); (J.C.); (Y.W.); (R.G.); (L.H.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| |
Collapse
|
2
|
Fang J, Sheng L, Ye Y, Ji J, Sun J, Zhang Y, Sun X. Recent advances in biosynthesis of mycotoxin-degrading enzymes and their applications in food and feed. Crit Rev Food Sci Nutr 2023:1-17. [PMID: 38108665 DOI: 10.1080/10408398.2023.2294166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi in food and feed, which can cause serious health problems. Bioenzymatic degradation is gaining increasing popularity due to its high specificity, gentle degradation conditions, and environmental friendliness. We reviewed recently reported biosynthetic mycotoxin-degrading enzymes, traditional and novel expression systems, enzyme optimization strategies, food and feed applications, safety evaluation of both degrading enzymes and degradation products, and commercialization potentials. Special emphasis is given to the novel expression systems, advanced optimization strategies, and safety considerations for industrial use. Over ten types of recombinases such as oxidoreductase and hydrolase have been studied in the enzymatic hydrolysis of mycotoxins. Besides traditional expression system of Escherichia coli and yeasts, these enzymes can also be expressed in novel systems such as Bacillus subtilis and lactic acid bacteria. To meet the requirements of industrial applications in terms of degradation efficacy and stability, genetic engineering and computational tools are used to optimize enzymatic expression. Currently, registration and technical difficulties have restricted commercial application of mycotoxin-degrading enzymes. To overcome these obstacles, systematic safety evaluation of both biosynthetic enzymes and their degradation products, in-depth understanding of degradation mechanisms and a comprehensive evaluation of their impact on food and feed quality are urgently needed.
Collapse
Affiliation(s)
- Jinpei Fang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| |
Collapse
|