1
|
Plata-Calzado C, Prieto AI, Cameán AM, Jos A. Analytical Methods for Anatoxin-a Determination: A Review. Toxins (Basel) 2024; 16:198. [PMID: 38668623 PMCID: PMC11053625 DOI: 10.3390/toxins16040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Anatoxin-a (ATX-a) is a potent neurotoxin produced by several species of cyanobacteria whose exposure can have direct consequences, including neurological disorders and death. The increasing prevalence of harmful cyanobacterial blooms makes the detection and reliable assessment of ATX-a levels essential to prevent the risk associated with public health. Therefore, the aim of this review is to compile the analytical methods developed to date for the detection and quantification of ATX-a levels alone and in mixtures with other cyanotoxins and their suitability. A classification of the analytical methods available is fundamental to make an appropriate choice according to the type of sample, the equipment available, and the required sensitivity and specificity for each specific purpose. The most widely used detection technique for the quantification of this toxin is liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analytical methods reviewed herein focus mainly on water and cyanobacterial samples, so the need for validated analytical methods in more complex matrices (vegetables and fish) for the determination of ATX-a to assess dietary exposure to this toxin is evidenced. There is currently a trend towards the validation of multitoxin methods as opposed to single-ATX-a determination methods, which corresponds to the real situation of cyanotoxins' confluence in nature.
Collapse
Affiliation(s)
| | - Ana I. Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain; (C.P.-C.); (A.M.C.); (A.J.)
| | | | | |
Collapse
|
2
|
Langan LM, Lovin LM, Taylor RB, Scarlett KR, Kevin Chambliss C, Chatterjee S, Scott JT, Brooks BW. Proteome changes in larval zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) exposed to (±) anatoxin-a. ENVIRONMENT INTERNATIONAL 2024; 185:108514. [PMID: 38394915 DOI: 10.1016/j.envint.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Anatoxin-a and its analogues are potent neurotoxins produced by several genera of cyanobacteria. Due in part to its high toxicity and potential presence in drinking water, these toxins pose threats to public health, companion animals and the environment. It primarily exerts toxicity as a cholinergic agonist, with high affinity at neuromuscular junctions, but molecular mechanisms by which it elicits toxicological responses are not fully understood. To advance understanding of this cyanobacteria, proteomic characterization (DIA shotgun proteomics) of two common fish models (zebrafish and fathead minnow) was performed following (±) anatoxin-a exposure. Specifically, proteome changes were identified and quantified in larval fish exposed for 96 h (0.01-3 mg/L (±) anatoxin-a and caffeine (a methodological positive control) with environmentally relevant treatment levels examined based on environmental exposure distributions of surface water data. Proteomic concentration - response relationships revealed 48 and 29 proteins with concentration - response relationships curves for zebrafish and fathead minnow, respectively. In contrast, the highest number of differentially expressed proteins (DEPs) varied between zebrafish (n = 145) and fathead minnow (n = 300), with only fatheads displaying DEPs at all treatment levels. For both species, genes associated with reproduction were significantly downregulated, with pathways analysis that broadly clustered genes into groups associated with DNA repair mechanisms. Importantly, significant differences in proteome response between the species was also observed, consistent with prior observations of differences in response using both behavioral assays and gene expression, adding further support to model specific differences in organismal sensitivity and/or response. When DEPs were read across from humans to zebrafish, disease ontology enrichment identified diseases associated with cognition and muscle weakness consistent with the prior literature. Our observations highlight limited knowledge of how (±) anatoxin-a, a commonly used synthetic racemate surrogate, elicits responses at a molecular level and advances its toxicological understanding.
Collapse
Affiliation(s)
- Laura M Langan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | - Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Raegyn B Taylor
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Chemistry, Baylor University, Waco, TX 76798, USA
| | - Kendall R Scarlett
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - C Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Chemistry, Baylor University, Waco, TX 76798, USA
| | - Saurabh Chatterjee
- Department of Medicine, Department of Environmental and Occupational Health, University of California Irvine, Irvine, CA 92617, USA
| | - J Thad Scott
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|