1
|
Opoku N, Hudu AR, Addy F. Mycotoxigenic Fusarium species and zearalenone concentration in commercial maize kernels in northern Ghana. Mycotoxin Res 2024; 40:581-590. [PMID: 39023737 DOI: 10.1007/s12550-024-00544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
The fungal genus Fusarium contains many toxigenic pathogens of maize with associated yield losses, reduction of grain quality, and accumulation of mycotoxins in harvested grains. To determine zearalenone (ZEN) concentration and identify the various Fusarium species in commercial maize grains, a survey of 75 maize samples, collected from 11 market centers in the five regions in northern Ghana was identified based on morphological characteristics, sequence analysis of the internal transcribed spacer region, and polymerase chain reaction using species-specific primers. ZEN levels were determined using HPLC. ZEN contamination was recorded in 33.3% of the maize samples, with concentrations ranging from 0.61 to 3.05 µg/kg. Based on VERT1/2 and TEF 1-α sequencing, F. verticillioides was the most prevalent species in the studied samples: 40.35% from the Upper East Region, 28.07% from the North East Region, 19.30% from the Upper West Region, 10.53% from the Savannah Region, and 1.75% for the Northern Region. Other fungal species found were F. equiseti and F. solani. A higher number of the Fusarium isolates were found in white maize (609 isolates from 27 samples) compared to yellow maize (225 isolates from 23 samples).
Collapse
Affiliation(s)
- Nelson Opoku
- Department of Biotechnology and Molecular Biology, Faculty of Biosciences, University for Development Studies, Nyankpala, Tamale, Ghana.
| | - Abdul Rashid Hudu
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Nyankpala, Tamale, Ghana
| | - Francis Addy
- Department of Biotechnology and Molecular Biology, Faculty of Biosciences, University for Development Studies, Nyankpala, Tamale, Ghana
| |
Collapse
|
2
|
Zingales V, Esposito MR, Quagliata M, Cimetta E, Ruiz MJ. Cytotoxic effects induced by combined exposure to the mycotoxins sterigmatocystin, ochratoxin A and patulin on human tumour and healthy 3D spheroids. Food Chem Toxicol 2024; 192:114951. [PMID: 39182638 DOI: 10.1016/j.fct.2024.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Humans are exposed to complex mixtures of mycotoxins through diet. Despite the serious threat they pose, mycotoxin risk assessment often overlooks co-exposure. With the aim of filling this gap, the present study investigates the combined cytotoxicity of sterigmatocystin (STE), ochratoxin A (OTA) and patulin (PAT) in human tumour Neuroblastoma and healthy Mesenchymal Stem Cells three-dimensional (3D) spheroids. The range of concentrations tested (1.56-50 μM for STE, 0.78-25 μM for OTA and 0.15-5 μM for PAT) was selected considering the IC50 values obtained in previous studies and the estimated dietary exposure of consumers. To ensure appropriate experimental conditions, assessments for single mycotoxins and their combinations were conducted simultaneously. The nature of the toxicological interactions among the mycotoxins was then defined using the isobologram analysis. Our results demonstrated increased cytotoxicity in mycotoxin mixtures compared to individual exposure, with abundance of synergistic interactions. These findings highlight that the co-occurrence of STE, OTA and PAT in food may increase their individual toxic effects and should not be underestimated. Moreover, the use of advanced culture models increased the reliability and physiological relevance of our results which can serve as a groundwork for formulating standardized regulatory approaches towards mycotoxin mixtures in food and feed.
Collapse
Affiliation(s)
- Veronica Zingales
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain; Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)-Lab BIAMET, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)-Lab BIAMET, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Martina Quagliata
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)-Lab BIAMET, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)-Lab BIAMET, Corso Stati Uniti 4, 35127, Padova, Italy
| | - María-José Ruiz
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain
| |
Collapse
|
3
|
Li Y, Zhang D, Zeng X, Liu C, Wu Y, Fu C. Advances in Aptamer-Based Biosensors for the Detection of Foodborne Mycotoxins. Molecules 2024; 29:3974. [PMID: 39203052 PMCID: PMC11356850 DOI: 10.3390/molecules29163974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Foodborne mycotoxins (FBMTs) are toxins produced by food itself or during processing and transportation that pose an enormous threat to public health security. However, traditional instrumental and chemical methods for detecting toxins have shortcomings, such as high operational difficulty, time consumption, and high cost, that limit their large-scale applications. In recent years, aptamer-based biosensors have become a new tool for food safety risk assessment and monitoring due to their high affinity, good specificity, and fast response. In this review, we focus on the progress of single-mode and dual-mode aptasensors in basic research and device applications over recent years. Furthermore, we also point out some problems in the current detection strategies, with the aim of stimulating future toxin detection systems for a transition toward ease of operation and rapid detection.
Collapse
Affiliation(s)
- Yangyang Li
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Dan Zhang
- School of Cable Engineering, Henan Institute of Technology, Xinxiang 453003, China
| | - Xiaoyuan Zeng
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Cheng Liu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Yan Wu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Cuicui Fu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| |
Collapse
|
4
|
Berzina Z, Pavlenko R, Bartkiene E, Bartkevics V. Mycotoxins and pyrrolizidine alkaloids in herbal dietary supplements. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:180-192. [PMID: 38629617 DOI: 10.1080/19393210.2024.2332516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2024] [Indexed: 06/09/2024]
Abstract
The market demand for herbal dietary supplements is rapidly growing and such products are becoming more common and accessible to consumers. However, the knowledge about their safety remains incomplete. Herbal dietary supplements are one of the food groups that can contribute significantly to human health concerns arising from chronic exposure to pyrrolizidine alkaloids and mycotoxins. This study aimed to simultaneously determine 79 natural contaminants, including mycotoxins, as well as pyrrolizidine and tropane alkaloids in herbal dietary supplements in one analytical run. Exposure assessment and human health risks were assessed for all compounds included in this study. The total concentration of naturally occurring contaminants in herbal dietary supplements reached 5.3 mg kg-1 and the most frequently detected mycotoxins were tentoxin and alternariol monomethyl ether. The latter was detected with the highest frequency, reaching concentrations up to 2.5 mg kg-1. The obtained results indicate a potential risk to public health related to herbal dietary supplement consumption.
Collapse
Affiliation(s)
- Zane Berzina
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
5
|
Stoev SD. Natural feed additives and bioactive supplements versus chemical additives as a safe and practical approach to combat foodborne mycotoxicoses. Front Nutr 2024; 11:1335779. [PMID: 38450227 PMCID: PMC10915786 DOI: 10.3389/fnut.2024.1335779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
This review highlights the possible hazard of mycotoxins occurrence in foods and feeds in regards to foodborne diseases. The possible management of the risk of contamination of foods and feeds with mycotoxins by using natural feed additives, protecting against deleterious effects of mycotoxins or inhibiting the growth of fungi and mycotoxin production, is deeply investigated in the available literature and some effective measures for safe utilization of mycotoxin contaminated feed/food are proposed. The biological methods of decontamination, degradation or biotransformation of mycotoxins are deeply analyzed and discussed. Some natural antagonists against target fungi are also reviewed and a comparison is made with conventional fungicides for ensuring a safe prevention of mycotoxin contamination. The most common and useful chemical methods of mycotoxins decontamination of agricultural commodities or raw materials are also investigated, e.g., chemical additives inactivating or destroying and/or adsorbing mycotoxins as well as chemical additives inhibiting the growth of fungi and mycotoxin production. The practical use and safety of various kind of feed/food additives or herbal/biological supplements as possible approach for ameliorating the adverse effects of some dangerous mycotoxins is deeply investigated and some suggestions are given. Various possibilities for decreasing mycotoxins toxicity, e.g., by clarifying the mechanisms of their toxicity and using some target antidotes and vitamins as supplements to the diet, are also studied in the literature and appropriate discussions or suggestions are made in this regard. Some studies on animal diets such as low carbohydrate intake, increased protein content, calorie restriction or the importance of dietary fats are also investigated in the available literature for possible amelioration of the ailments associated with mycotoxins exposure. It could be concluded that natural feed additives and bioactive supplements would be more safe and practical approach to combat foodborne mycotoxicoses as compared to chemical additives.
Collapse
Affiliation(s)
- Stoycho D. Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|