1
|
Grigorieva O, Basalova N, Dyachkova U, Novoseletskaya E, Vigovskii M, Arbatskiy M, Kulebyakina M, Efimenko A. Modeling the profibrotic microenvironment in vitro: Model validation. Biochem Biophys Res Commun 2024; 733:150574. [PMID: 39208646 DOI: 10.1016/j.bbrc.2024.150574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Establishing the molecular and cellular mechanisms of fibrosis requires the development of validated and reproducible models. The complexity of in vivo models challenges the monitoring of an individual cell fate, in some cases making it impossible. However, the set of factors affecting cells in vitro culture systems differ significantly from in vivo conditions, insufficiently reproducing living systems. Thus, to model profibrotic conditions in vitro, usually the key profibrotic factor, transforming growth factor beta (TGFβ-1) is used as a single factor. TGFβ-1 stimulates the differentiation of fibroblasts into myofibroblasts, the main effector cells promoting the development and progression of fibrosis. However, except for soluble factors, the rigidity and composition of the extracellular matrix (ECM) play a critical role in the differentiation process. To develop the model of more complex profibrotic microenvironment in vitro, we used a combination of factors: decellularized ECM synthesized by human dermal fibroblasts in the presence of ascorbic acid if cultured as cell sheets and recombinant TGFβ-1 as a supplement. When culturing human mesenchymal stromal cells derived from adipose tissue (MSCs) under described conditions, we observed differentiation of MSCs into myofibroblasts due to increased number of cells with stress fibrils with alpha-smooth muscle actin (αSMA), and increased expression of myofibroblast marker genes such as collagen I, EDA-fibronectin and αSMA. Importantly, secretome of MSCs changed in these profibrotic microenvironment: the secretion of the profibrotic proteins SPARC and fibulin-2 increased, while the secretion of the antifibrotic hepatocyte growth factor (HGF) decreased. Analysis of transciptomic pattern of regulatory microRNAs in MSCs revealed 49 miRNAs with increased expression and 3 miRNAs with decreased expression under profibrotic stimuli. Bioinformatics analysis confirmed that at least 184 gene targets of the differently expressed miRNAs genes were associated with fibrosis. To further validate the developed model of profibrotic microenvironment, we cultured human dermal fibroblasts in these conditions and observed increased expression of fibroblast activation protein (FAPa) after 12 h of cultivation as well as increased level of αSMA and higher number of αSMA + stress fibrils after 72 h. The data obtained allow us to conclude that the conditions formed by the combination of profibrotic ECM and TGFβ-1 provide a complex profibrotic microenvironment in vitro. Thus, this model can be applicable in studying the mechanism of fibrosis development, as well as for the development of antifibrotic therapy.
Collapse
Affiliation(s)
- Olga Grigorieva
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia.
| | - Nataliya Basalova
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Uliana Dyachkova
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Ekaterina Novoseletskaya
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Maksim Vigovskii
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Mikhail Arbatskiy
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Maria Kulebyakina
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Anastasia Efimenko
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| |
Collapse
|
2
|
Aydemir MC, Yaman İ, Kilic MA. Membrane Receptor-Mediated Disruption of Cellular Homeostasis: Changes in Intracellular Signaling Pathways Increase the Toxicity of Ochratoxin A. Mol Nutr Food Res 2024; 68:e2300777. [PMID: 38880772 DOI: 10.1002/mnfr.202300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Organisms maintain their cellular homeostatic balance by interacting with their environment through the use of their cell surface receptors. Membrane based receptors such as the transforming growth factor β receptor (TGFR), the prolactin receptor (PRLR), and hepatocyte growth factor receptor (HGFR), along with their associated signaling cascade, play significant roles in retaining cellular homeostasis. While these receptors and related signaling pathways are essential for health of cell and organism, their dysregulation can lead to imbalance in cell function with severe pathological conditions such as cell death or cancer. Ochratoxin A (OTA) can disrupt cellular homeostasis by altering expression levels of these receptors and/or receptor-associated intracellular downstream signaling modulators and/or pattern and levels of their phosphorylation/dephosphorylation. Recent studies have shown that the activity of the TGFR, the PRLR, and HGFR and their associated signaling cascades change upon OTA exposure. A critical evaluation of these findings suggests that while increased activity of the HGFR and TGFR signaling pathways leads to an increase in cell survival and fibrosis, decreased activity of the PRLR signaling pathway leads to tissue damage. This review explores the roles of these receptors in OTA-related pathologies and effects on cellular homeostasis.
Collapse
Affiliation(s)
- Mesut Cihan Aydemir
- Department of Biology, Institute of Natural and Applied Sciences, Akdeniz University, Antalya, 07070, Turkey
| | - İbrahim Yaman
- Molecular Toxicology and Cancer Research Laboratory, Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Bebek, 34342, Turkey
| | - Mehmet Akif Kilic
- Department of Biology, Molecular Biology Section, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
3
|
Kim NY, Kim MO, Shin S, Kwon WS, Kim B, Lee JY, In Lee S. Effect of atractylenolide III on zearalenone-induced Snail1-mediated epithelial-mesenchymal transition in porcine intestinal epithelium. J Anim Sci Biotechnol 2024; 15:80. [PMID: 38845033 PMCID: PMC11157892 DOI: 10.1186/s40104-024-01038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The intestinal epithelium performs essential physiological functions, such as nutrient absorption, and acts as a barrier to prevent the entry of harmful substances. Mycotoxins are prevalent contaminants found in animal feed that exert harmful effects on the health of livestock. Zearalenone (ZEA) is produced by the Fusarium genus and induces gastrointestinal dysfunction and disrupts the health and immune system of animals. Here, we evaluated the molecular mechanisms that regulate the effects of ZEA on the porcine intestinal epithelium. RESULTS Treatment of IPEC-J2 cells with ZEA decreased the expression of E-cadherin and increased the expression of Snai1 and Vimentin, which induced Snail1-mediated epithelial-to-mesenchymal transition (EMT). In addition, ZEA induces Snail-mediated EMT through the activation of TGF-β signaling. The treatment of IPEC-J2 cells with atractylenolide III, which were exposed to ZEA, alleviated EMT. CONCLUSIONS Our findings provide insights into the molecular mechanisms of ZEA toxicity in porcine intestinal epithelial cells and ways to mitigate it.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Bomi Kim
- National Institute for Korean Medicine Development, Gyeongsan, 38540, Republic of Korea
| | - Joon Yeop Lee
- National Institute for Korean Medicine Development, Gyeongsan, 38540, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea.
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea.
| |
Collapse
|
4
|
Kappari L, Dasireddy JR, Applegate TJ, Selvaraj RK, Shanmugasundaram R. MicroRNAs: exploring their role in farm animal disease and mycotoxin challenges. Front Vet Sci 2024; 11:1372961. [PMID: 38803799 PMCID: PMC11129562 DOI: 10.3389/fvets.2024.1372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
MicroRNAs (miRNAs) serve as key regulators in gene expression and play a crucial role in immune responses, holding a significant promise for diagnosing and managing diseases in farm animals. This review article summarizes current research on the role of miRNAs in various farm animal diseases and mycotoxicosis, highlighting their potential as biomarkers and using them for mitigation strategies. Through an extensive literature review, we focused on the impact of miRNAs in the pathogenesis of several farm animal diseases, including viral and bacterial infections and mycotoxicosis. They regulate gene expression by inducing mRNA deadenylation, decay, or translational inhibition, significantly impacting cellular processes and protein synthesis. The research revealed specific miRNAs associated with the diseases; for instance, gga-miR-M4 is crucial in Marek's disease, and gga-miR-375 tumor-suppressing function in Avian Leukosis. In swine disease such as Porcine Respiratory and Reproductive Syndrome (PRRS) and swine influenza, miRNAs like miR-155 and miR-21-3p emerged as key regulatory factors. Additionally, our review highlighted the interaction between miRNAs and mycotoxins, suggesting miRNAs can be used as a biomarker for mycotoxin exposure. For example, alterations in miRNA expression, such as the dysregulation observed in response to Aflatoxin B1 (AFB1) in chickens, may indicate potential mechanisms for toxin-induced changes in lipid metabolism leading to liver damage. Our findings highlight miRNAs potential for early disease detection and intervention in farm animal disease management, potentially reducing significant economic losses in agriculture. With only a fraction of miRNAs functionally characterized in farm animals, this review underlines more focused research on specific miRNAs altered in distinct diseases, using advanced technologies like CRISPR-Cas9 screening, single-cell sequencing, and integrated multi-omics approaches. Identifying specific miRNA targets offers a novel pathway for early disease detection and the development of mitigation strategies against mycotoxin exposure in farm animals.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | | | - Todd J. Applegate
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
5
|
Murtaza B, Li X, Nawaz MY, Saleemi MK, Li G, Jin B, Wang L, Xu Y. Toxicodynamic of combined mycotoxins: MicroRNAs and acute-phase proteins as diagnostic biomarkers. Compr Rev Food Sci Food Saf 2024; 23:e13338. [PMID: 38629461 DOI: 10.1111/1541-4337.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | | | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
6
|
Ben Miri Y, Benabdallah A, Chentir I, Djenane D, Luvisi A, De Bellis L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024; 13:1184. [PMID: 38672856 PMCID: PMC11049263 DOI: 10.3390/foods13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, BP 166, M’sila 28000, Algeria;
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agri-Resources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, BP 17, Tizi-Ouzou 15000, Algeria;
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
7
|
Kharboush TG, Ahmed IA, Farag AA, Kharboush T, Sayed AEDH, Abdel-Kareim AM, Al Mohaini M, Attia H, Eid RA, Zaki MSA, Al-Tabbakh ASM. Epigenetic alterations of miR-155 and global DNA methylation as potential mediators of ochratoxin A cytotoxicity and carcinogenicity in human lung fibroblasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5473-5483. [PMID: 38114706 PMCID: PMC10799132 DOI: 10.1007/s11356-023-31283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Ochratoxin A (OTA) is a well-known mycotoxin that adversely affects different human cells. Inhalational exposure to OTA and subsequent pulmonary diseases have been previously reported, yet its potential carcinogenicity and underlying molecular mechanisms have not been fully elucidated. This study aimed to evaluate the OTA-induced cytotoxicity and the epigenetic changes underlying its potential carcinogenicity in fetal lung fibroblast (WI-38) cells. OTA cytotoxicity was assessed by MTT assay; RT-qPCR was used to determine the expression of BAX, BCL-2, TP53, and miR-155, while ELISA was used for measuring 5-methyl cytosine percentage to assess global DNA methylation in OTA-treated versus control cells. WI-38 cells demonstrated sensitivity to OTA with IC50 at 22.38 μM. Though BAX and Bcl-2 were downregulated, with low BAX/BCL-2 ratio, and TP53 was upregulated, their fold changes showed decline trend with increasing OTA concentration. A significant dose-dependent miR-155 upregulation was observed, with dynamic time-related decline. Using subtoxic OTA concentrations, a significant global DNA hypermethylation with significant dose-dependent and dynamic alterations was identified. Global DNA hypermethylation and miR-155 upregulation are epigenetic mechanisms that mediate OTA toxicity on WI-38 cells. BAX downregulation, reduced BAX/BCL-2 ratio together with miR-155 upregulation indicated either the inhibition of TP53-dependent apoptosis or a tissue specific response to OTA exposure. The aforementioned OTA-induced variations present a new molecular evidence of OTA cytotoxicity and possible carcinogenicity in lung fibroblast cells.
Collapse
Affiliation(s)
- Taghrid G Kharboush
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Inas A Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
- Central Laboratory for Research, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Amina A Farag
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Tayseir Kharboush
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Asyut, 71516, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Asyut, 71516, Egypt.
| | - Amal M Abdel-Kareim
- Department of Zoology, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 31982, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, 31982, Alahsa, Saudi Arabia
| | - Hend Attia
- Clinical and Chemical Pathology, School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, Saudi Arabia
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, Saudi Arabia
| | - Al-Shaimaa M Al-Tabbakh
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| |
Collapse
|