1
|
Costa SR, Vasconcelos AG, Almeida JOCS, Arcanjo DDR, Dematei A, Barbosa EA, Silva PC, Nascimento T, Santos LH, Eaton P, Leite JRSDA, Brand GD. Structural Characterization and Rat Aortic Vascular Reactivity of Bradykinin-Potentiating Peptides (BPPs) from the Snake Venom of Bothrops moojeni from Delta do Parnaíba Region, Brazil. JOURNAL OF NATURAL PRODUCTS 2024; 87:820-830. [PMID: 38449376 DOI: 10.1021/acs.jnatprod.3c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.
Collapse
Affiliation(s)
- Samuel R Costa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - José Otávio C S Almeida
- LAFMOL-Laboratório de Estudos Funcionais e Moleculares em Fisiofarmacologia, Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina 64049-550, Brazil
| | - Daniel D R Arcanjo
- LAFMOL-Laboratório de Estudos Funcionais e Moleculares em Fisiofarmacologia, Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina 64049-550, Brazil
| | - Anderson Dematei
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Eder A Barbosa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Pedro Costa Silva
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Thiago Nascimento
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Lucianna H Santos
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Peter Eaton
- The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7EL, U.K
| | - José Roberto S de A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
2
|
Freitas-de-Sousa LA, Colombini M, Souza VC, Silva JPC, Mota-da-Silva A, Almeida MRN, Machado RA, Fonseca WL, Sartim MA, Sachett J, Serrano SMT, Junqueira-de-Azevedo ILM, Grazziotin FG, Monteiro WM, Bernarde PS, Moura-da-Silva AM. Venom Composition of Neglected Bothropoid Snakes from the Amazon Rainforest: Ecological and Toxinological Implications. Toxins (Basel) 2024; 16:83. [PMID: 38393161 PMCID: PMC10891915 DOI: 10.3390/toxins16020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Snake venoms have evolved in several families of Caenophidae, and their toxins have been assumed to be biochemical weapons with a role as a trophic adaptation. However, it remains unclear how venom contributes to the success of venomous species for adaptation to different environments. Here we compared the venoms from Bothrocophias hyoprora, Bothrops taeniatus, Bothrops bilineatus smaragdinus, Bothrops brazili, and Bothrops atrox collected in the Amazon Rainforest, aiming to understand the ecological and toxinological consequences of venom composition. Transcriptomic and proteomic analyses indicated that the venoms presented the same toxin groups characteristic from bothropoids, but with distinct isoforms with variable qualitative and quantitative abundances, contributing to distinct enzymatic and toxic effects. Despite the particularities of each venom, commercial Bothrops antivenom recognized the venom components and neutralized the lethality of all species. No clear features could be observed between venoms from arboreal and terrestrial habitats, nor in the dispersion of the species throughout the Amazon habitats, supporting the notion that venom composition may not shape the ecological or toxinological characteristics of these snake species and that other factors influence their foraging or dispersal in different ecological niches.
Collapse
Affiliation(s)
| | - Mônica Colombini
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.A.F.-d.-S.); (M.C.)
| | - Vinicius C. Souza
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (V.C.S.); (J.P.C.S.); (S.M.T.S.); (I.L.M.J.-d.-A.)
| | - Joanderson P. C. Silva
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (V.C.S.); (J.P.C.S.); (S.M.T.S.); (I.L.M.J.-d.-A.)
| | - Ageane Mota-da-Silva
- Instituto Federal do Acre, Campus de Cruzeiro do Sul, Cruzeiro do Sul 69980-000, AC, Brazil;
| | - Marllus R. N. Almeida
- Laboratório de Herpetologia, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul 69895-000, AC, Brazil; (M.R.N.A.); (R.A.M.); (W.L.F.); (P.S.B.)
| | - Reginaldo A. Machado
- Laboratório de Herpetologia, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul 69895-000, AC, Brazil; (M.R.N.A.); (R.A.M.); (W.L.F.); (P.S.B.)
| | - Wirven L. Fonseca
- Laboratório de Herpetologia, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul 69895-000, AC, Brazil; (M.R.N.A.); (R.A.M.); (W.L.F.); (P.S.B.)
| | - Marco A. Sartim
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil; (M.A.S.); (J.S.); (W.M.M.)
| | - Jacqueline Sachett
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil; (M.A.S.); (J.S.); (W.M.M.)
| | - Solange M. T. Serrano
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (V.C.S.); (J.P.C.S.); (S.M.T.S.); (I.L.M.J.-d.-A.)
| | - Inácio L. M. Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (V.C.S.); (J.P.C.S.); (S.M.T.S.); (I.L.M.J.-d.-A.)
| | - Felipe G. Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | - Wuelton M. Monteiro
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil; (M.A.S.); (J.S.); (W.M.M.)
| | - Paulo S. Bernarde
- Laboratório de Herpetologia, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul 69895-000, AC, Brazil; (M.R.N.A.); (R.A.M.); (W.L.F.); (P.S.B.)
| | - Ana M. Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.A.F.-d.-S.); (M.C.)
| |
Collapse
|
3
|
Batroxin I: A Novel Bradykinin-Potentiating Peptide with Cytotoxic Activity Isolated from Bothrops atrox Snake Venom. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Rodríguez-Vargas A, Vega N, Reyes-Montaño E, Corzo G, Neri-Castro E, Clement H, Ruiz-Gómez F. Intraspecific Differences in the Venom of Crotalus durissus cumanensis from Colombia. Toxins (Basel) 2022; 14:toxins14080532. [PMID: 36006194 PMCID: PMC9416679 DOI: 10.3390/toxins14080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Biochemical and biological differences in the venom of Crotalus durissus cumanensis from three ecoregions of Colombia were evaluated. Rattlesnakes were collected from the geographic areas of Magdalena Medio (MM), Caribe (CA) and Orinoquía (OR). All three regionally distributed venoms contain proteases, PLA2s and the basic subunit of crotoxin. However, only crotamine was detected in the CA venom. The highest lethality, coagulant, phospholipase A2 and hyaluronidase activities were found in the MM venom. Also, some differences, observed by western blot and immunoaffinity, were found in all three venoms when using commercial antivenoms. Furthermore, all three eco-regional venoms showed intraspecific variability, considering the differences in the abundance and intensity of their components, in addition to the activity and response to commercial antivenoms.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
- Correspondence:
| | - Nohora Vega
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
| | - Edgar Reyes-Montaño
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia;
| |
Collapse
|
5
|
Interpopulational variation and ontogenetic shift in the venom composition of Lataste's viper (Vipera latastei, Boscá 1878) from northern Portugal. J Proteomics 2022; 263:104613. [PMID: 35589061 DOI: 10.1016/j.jprot.2022.104613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
Abstract
Lataste's viper (Vipera latastei) is a venomous European viper endemic to the Iberian Peninsula, recognised as medically important by the World Health Organization. To date, no comprehensive characterisation of this species' venom has been reported. Here, we analysed the venoms of juvenile and adult specimens of V. latastei from two environmentally different populations from northern Portugal. Using bottom-up venomics, we produced six venom proteomes (three per population) from vipers belonging to both age classes (i.e., two juveniles and four adults), and RP-HPLC profiles of 54 venoms collected from wild specimens. Venoms from juveniles and adults differed in their chromatographic profiles and relative abundances of their toxins, suggesting the occurrence of ontogenetic changes in venom composition. Specifically, snake venom metalloproteinase (SVMP) was the most abundant toxin family in juvenile venoms, while snake venom serine proteinases (SVSPs), phospholipases A2 (PLA2s), and C-type lectin-like (CTLs) proteins were the main toxins comprising adult venoms. The RP-HPLC venom profiles were found to vary significantly between the two sampled localities, indicating geographic variability. Furthermore, the presence/absence of certain peaks in the venom chromatographic profiles appeared to be significantly correlated also to factors like body size and sex of the vipers. Our findings show that V. latastei venom is a variable phenotype. The intraspecific differences we detected in its composition likely mirror changes in the feeding ecology of this species, taking place during different life stages and under different environmental pressures. SIGNIFICANCE: Lataste's viper (Vipera latastei) is a medically important viper endemic to the Iberian Peninsula, inhabiting different habitats and undergoing a marked ontogenetic dietary shift. In the current study, we report the first proteomic analysis of V. latastei venom from two environmentally different localities in northern Portugal. Our bottom-up venomic analyses show that snake venom serine proteinases (SVSPs), phospholipases A2 (PLA2s), and C-type lectin-like (CTLs) proteins are the major components of adult V. latastei venom. The comparative analysis of young and adult venoms suggests the occurrence of ontogenetic shift in toxin abundances, with snake venom metalloproteinases (SVMPs) being the predominant toxins in juvenile venoms. Moreover, geographic venom variation between the two studied populations is also detected, with our statistical analyses suggesting that factors like body size and sex of the vipers are possibly at play in its determination. Our work represents the first assessment of the composition of V. latastei venom, and the first step towards a better understanding of the drivers behind its variability.
Collapse
|
6
|
Antimicrobial peptidomes of Bothrops atrox and Bothrops jararacussu snake venoms. Amino Acids 2021; 53:1635-1648. [PMID: 34482475 DOI: 10.1007/s00726-021-03055-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/11/2021] [Indexed: 01/25/2023]
Abstract
The worrisome emergence of pathogens resistant to conventional drugs has stimulated the search for new classes of antimicrobial and antiparasitic agents from natural sources. Antimicrobial peptides (AMPs), acting through mechanisms that do not rely on the interaction with a specific receptor, provide new possibilities for the development of drugs against resistant organisms. This study sought to purify and proteomically characterize the antimicrobial and antiparasitic peptidomes of B. atrox and B. jararacussu snake venoms against Gram-positive (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus-MRSA), Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, and the protozoan parasites Leishmania amazonensis and Plasmodium falciparum (clone W2, resistant to chloroquine). To this end, B. atrox and B. jararacussu venom peptides were purified by combination of 3 kDa cut-off Amicon® ultracentrifugal filters and reverse-phase high-performance liquid chromatography, and then identified by electrospray-ionization Ion-Trap/Time-of-Flight mass spectrometry. Fourteen distinct peptides, with masses ranging from 443.17 to 1383.73 Da and primary structure between 3 and 13 amino acid residues, were sequenced. Among them, 13 contained unique sequences, including 4 novel bradykinin-potentiating-like peptides (BPPs), and a snake venom metalloproteinase tripeptide inhibitor (SVMPi). Although commonly found in Viperidae venoms, except for Bax-12, the BPPs and SVMPi here reported had not been described in B. atrox and B. jararacussu venoms. Among the novel peptides, some exhibited bactericidal activity towards P. aeruginosa and S. aureus, had low hemolytic effect, and were devoid of antiparasitic activity. The identified novel antimicrobial peptides may be relevant in the development of new drugs for the management of multidrug-resistant Gram-negative and Gram-positive bacteria.
Collapse
|
7
|
Abd El-Aziz TM, Soares AG, Stockand JD. Advances in venomics: Modern separation techniques and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1160:122352. [PMID: 32971366 PMCID: PMC8174749 DOI: 10.1016/j.jchromb.2020.122352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
Abstract
Snake venoms are complex chemical mixtures of biologically active proteins and non-protein components. Toxins have a wide range of targets and effects to include ion channels and membrane receptors, and platelet aggregation and platelet plug formation. Toxins target these effectors and effects at high affinity and selectivity. From a pharmacological perspective, snake venom compounds are a valuable resource for drug discovery and development. However, a major challenge to drug discovery using snake venoms is isolating and analyzing the bioactive proteins and peptides in these complex mixtures. Getting molecular information from complex mixtures such as snake venoms requires proteomic analyses, generally combined with transcriptomic analyses of venom glands. The present review summarizes current knowledge and highlights important recent advances in venomics with special emphasis on contemporary separation techniques and bioinformatics that have begun to elaborate the complexity of snake venoms. Several analytical techniques such as two-dimensional gel electrophoresis, RP-HPLC, size exclusion chromatography, ion exchange chromatography, MALDI-TOF-MS, and LC-ESI-QTOF-MS have been employed in this regard. The improvement of separation approaches such as multidimensional-HPLC, 2D-electrophoresis coupled to soft-ionization (MALDI and ESI) mass spectrometry has been critical to obtain an accurate picture of the startling complexity of venoms. In the case of bioinformatics, a variety of software tools such as PEAKS also has been used successfully. Such information gleaned from venomics is important to both predicting and resolving the biological activity of the active components of venoms, which in turn is key for the development of new drugs based on these venom components.
Collapse
Affiliation(s)
- Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Antonio G Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| |
Collapse
|
8
|
Simizo A, Kitano ES, Sant'Anna SS, Grego KF, Tanaka-Azevedo AM, Tashima AK. Comparative gender peptidomics of Bothrops atrox venoms: are there differences between them? J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200055. [PMID: 33088286 PMCID: PMC7546584 DOI: 10.1590/1678-9199-jvatitd-2020-0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Bothrops atrox is known to be the pit viper responsible for
most snakebites and human fatalities in the Amazon region. It can be found
in a wide geographical area including northern South America, the east of
Andes and the Amazon basin. Possibly, due to its wide distribution and
generalist feeding, intraspecific venom variation was reported by previous
proteomics studies. Sex-based and ontogenetic variations on venom
compositions of Bothrops snakes were also subject of
proteomic and peptidomic analysis. However, the venom peptidome of
B. atrox remains unknown. Methods: We conducted a mass spectrometry-based analysis of the venom peptides of
individual male and female specimens combining bottom-up and top-down
approaches. Results: We identified in B. atrox a total of 105 native peptides in
the mass range of 0.4 to 13.9 kDa. Quantitative analysis showed that
phospholipase A2 and bradykinin potentiating peptides were the
most abundant peptide families in both genders, whereas disintegrin levels
were significantly increased in the venoms of females. Known peptides
processed at non-canonical sites and new peptides as the Ba1a, which
contains the SVMP BATXSVMPII1 catalytic site, were also revealed in this
work. Conclusion: The venom peptidomes of male and female specimens of B.
atrox were analyzed by mass spectrometry-based approaches in
this work. The study points to differences in disintegrin levels in the
venoms of females that may result in distinct pathophysiology of
envenomation. Further research is required to explore the potential
biological implications of this finding.
Collapse
Affiliation(s)
- Adriana Simizo
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Eduardo S Kitano
- Laboratory of Immunology, Heart Institute, Medical School, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Sávio S Sant'Anna
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | | | | | - Alexandre K Tashima
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil.,Special Laboratory for Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Mora-Obando D, Salazar-Valenzuela D, Pla D, Lomonte B, Guerrero-Vargas JA, Ayerbe S, Gibbs HL, Calvete JJ. Venom variation in Bothrops asper lineages from North-Western South America. J Proteomics 2020; 229:103945. [DOI: 10.1016/j.jprot.2020.103945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
|
10
|
Monteiro WM, Contreras-Bernal JC, Bisneto PF, Sachett J, Mendonça da Silva I, Lacerda M, Guimarães da Costa A, Val F, Brasileiro L, Sartim MA, Silva-de-Oliveira S, Bernarde PS, Kaefer IL, Grazziotin FG, Wen FH, Moura-da-Silva AM. Bothrops atrox, the most important snake involved in human envenomings in the amazon: How venomics contributes to the knowledge of snake biology and clinical toxinology. Toxicon X 2020; 6:100037. [PMID: 32550592 PMCID: PMC7285970 DOI: 10.1016/j.toxcx.2020.100037] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 01/22/2023] Open
Abstract
Bothrops atrox snakes are mostly endemic of the Amazon rainforest and is certainly the South American pit viper responsible for most of the snakebites in the region. The composition of B. atrox venom is significantly known and has been used to trace the relevance of the venom phenotype for snake biology and for the impacts in the clinics of human patients involved in accidents by B. atrox. However, in spite of the wide distribution and the great medical relevance of B. atrox snakes, B. atrox taxonomy is not fully resolved and the impacts of the lack of taxonomic resolution on the studies focused on venom or envenoming are currently unknown. B. atrox venom presents different degrees of compositional variability and is generally coagulotoxic, inducing systemic hematological disturbances and local tissue damage in snakebite patients. Antivenoms are the effective therapy for attenuating the clinical signs. This review brings a comprehensive discussion of the literature concerning B. atrox snakes encompassing from snake taxonomy, diet and venom composition, towards clinical aspects of snakebite patients and efficacy of the antivenoms. This discussion is highly supported by the contributions that venomics and antivenomics added for the advancement of knowledge of B. atrox snakes, their venoms and the treatment of accidents they evoke.
Collapse
Affiliation(s)
- Wuelton Marcelo Monteiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Jorge Carlos Contreras-Bernal
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Pedro Ferreira Bisneto
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Jacqueline Sachett
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Alfredo da Matta, Manaus, Brazil
| | - Iran Mendonça da Silva
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marcus Lacerda
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane, Manaus, Brazil
| | - Allyson Guimarães da Costa
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | - Fernando Val
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Lisele Brasileiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marco Aurélio Sartim
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Sâmella Silva-de-Oliveira
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Paulo Sérgio Bernarde
- Laboratório de Herpetologia, Centro Multidisciplinar, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, AC, Brazil
| | - Igor L. Kaefer
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | | | | | - Ana Maria Moura-da-Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
11
|
Pinheiro-Júnior EL, Boldrini-França J, de Campos Araújo LMP, Santos-Filho NA, Bendhack LM, Cilli EM, Arantes EC. LmrBPP9: A synthetic bradykinin-potentiating peptide from Lachesis muta rhombeata venom that inhibits the angiotensin-converting enzyme activity in vitro and reduces the blood pressure of hypertensive rats. Peptides 2018; 102:1-7. [PMID: 29410030 DOI: 10.1016/j.peptides.2018.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/12/2018] [Accepted: 01/30/2018] [Indexed: 11/19/2022]
Abstract
Bradykinin-potentiating peptides (BPPs) are an important group of toxins present in Lachesis muta rhombeata venom. They act directly at renin-angiotensin-aldosterone system, through the inhibition of angiotensin-converting enzyme (ACE). This action may contribute to the hypotensive shock observed during the envenoming by this species. Thus, the main goal of this study was the solid-phase synthesis of a BPP found in L. m. rhombeata venom and its in vitro and in vivo characterization in relation to ACE inhibition and hypotensive activity, respectively. The LmrBPP9 peptide was synthesized using an automated solid-phase peptide synthesizer and purified by reversed-phase fast protein liquid chromatography (FPLC). The in vitro IC50 of the synthetic peptide is 4.25 ± 0.10 μM, showing a great capacity of ACE inhibition. The in vivo studies showed that LmrBPP9 induces blood pressure reduction, both in normotensive and hypertensive rats, being more pronounced in the last ones. These results agree with the in vitro results, showing that the synthetic peptide LmrBPP9 is a potential molecule to the development of a new antihypertensive drug.
Collapse
Affiliation(s)
| | - Johara Boldrini-França
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Lusiane Maria Bendhack
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
12
|
Diniz-Sousa R, Caldeira CAS, Kayano AM, Paloschi MV, Pimenta DC, Simões-Silva R, Ferreira AS, Zanchi FB, Matos NB, Grabner FP, Calderon LA, Zuliani JP, Soares AM. Identification of the Molecular Determinants of the Antibacterial Activity of LmutTX, a Lys49 Phospholipase A2
Homologue Isolated from Lachesis muta muta
Snake Venom (Linnaeus, 1766). Basic Clin Pharmacol Toxicol 2017; 122:413-423. [DOI: 10.1111/bcpt.12921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Cleópatra A. S. Caldeira
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Anderson M. Kayano
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Mauro V. Paloschi
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Laboratory of Cellular Immunology Applied to Heath; Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | - Daniel. C. Pimenta
- Biochemistry and Biophysics Laboratory; Butantan Institute; Sao Paulo SP Brazil
| | - Rodrigo Simões-Silva
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Amália S. Ferreira
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Fernando B. Zanchi
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Najla B. Matos
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Microbiology Laboratory; Research Center on Tropical Medicine of Rondonia (CEPEM); Porto Velho RO Brazil
- Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | | | - Leonardo A. Calderon
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Juliana P. Zuliani
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
- Laboratory of Cellular Immunology Applied to Heath; Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | - Andreimar M. Soares
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
- Sao Lucas Universitary Center (UNISL); Porto Velho RO Brazil
| |
Collapse
|
13
|
Mladic M, de Waal T, Burggraaff L, Slagboom J, Somsen GW, Niessen WMA, Manjunatha Kini R, Kool J. Rapid screening and identification of ACE inhibitors in snake venoms using at-line nanofractionation LC-MS. Anal Bioanal Chem 2017; 409:5987-5997. [PMID: 28801827 PMCID: PMC5602078 DOI: 10.1007/s00216-017-0531-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/13/2017] [Accepted: 07/17/2017] [Indexed: 11/05/2022]
Abstract
This study presents an analytical method for the screening of snake venoms for inhibitors of the angiotensin-converting enzyme (ACE) and a strategy for their rapid identification. The method is based on an at-line nanofractionation approach, which combines liquid chromatography (LC), mass spectrometry (MS), and pharmacology in one platform. After initial LC separation of a crude venom, a post-column flow split is introduced enabling parallel MS identification and high-resolution fractionation onto 384-well plates. The plates are subsequently freeze-dried and used in a fluorescence-based ACE activity assay to determine the ability of the nanofractions to inhibit ACE activity. Once the bioactive wells are identified, the parallel MS data reveals the masses corresponding to the activities found. Narrowing down of possible bioactive candidates is provided by comparison of bioactivity profiles after reversed-phase liquid chromatography (RPLC) and after hydrophilic interaction chromatography (HILIC) of a crude venom. Additional nanoLC-MS/MS analysis is performed on the content of the bioactive nanofractions to determine peptide sequences. The method described was optimized, evaluated, and successfully applied for screening of 30 snake venoms for the presence of ACE inhibitors. As a result, two new bioactive peptides were identified: pELWPRPHVPP in Crotalus viridis viridis venom with IC50 = 1.1 μM and pEWPPWPPRPPIPP in Cerastes cerastes cerastes venom with IC50 = 3.5 μM. The identified peptides possess a high sequence similarity to other bradykinin-potentiating peptides (BPPs), which are known ACE inhibitors found in snake venoms.
Collapse
Affiliation(s)
- Marija Mladic
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Tessa de Waal
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Lindsey Burggraaff
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Wilfried M A Niessen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.,hyphen MassSpec, Herenweg 95, 2361 EK, Warmond, The Netherlands
| | - R Manjunatha Kini
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Fucase TM, Sciani JM, Cavalcante I, Viala VL, Chagas BB, Pimenta DC, Spencer PJ. Isolation and biochemical characterization of bradykinin-potentiating peptides from Bitis gabonica rhinoceros. J Venom Anim Toxins Incl Trop Dis 2017; 23:33. [PMID: 28670326 PMCID: PMC5485657 DOI: 10.1186/s40409-017-0124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Background Venoms represent a still underexplored reservoir of bioactive components that might mitigate or cure diseases in conditions in which conventional therapy is ineffective. The bradykinin-potentiating peptides (BPPs) comprise a class of angiotensin-I converting enzyme (ACE) inhibitors. The BPPs usually consist of oligopeptides with 5 to 13 residues with a high number of proline residues and the tripeptide Ile-Pro-Pro (IPP-tripeptide) in the C-terminus region and have a conserved N-terminal pyroglutamate residue. As a whole, the action of the BPPs on prey and snakebite victims results in the decrease of the blood pressure. The aim of this work was to isolate and characterize novel BPPs from the venom of Bitis gabonica rhinoceros. Methods The crude venom of B. g. rhinoceros was fractionated by size exclusion chromatography and the peptide fraction (<7 kDa) was separated by reverse phase chromatography (RP-HPLC) and analyzed by ESI-IT-TOF-MS/MS. One new BPP was identified, synthetized and assayed for ACE inhibition and, in vivo, for edema potentiation. Results Typical BPP signatures were identified in three RP-HPLC fractions. CID fragmentation presented the usual y-ion of the terminal P-P fragment as a predominant signal at m/z 213.1. De novo peptide sequencing identified one Bothrops-like BPP and one new BPP sequence. The new BPP was synthesized and showed poor inhibition over ACE, but displayed significant bradykinin-induced edema potentiation. Conclusions So far, few BPPs are described in Viperinae, and based on the sequenced peptides, two non-canonical sequences were detected. The possible clinical role of this new peptides remains unclear.
Collapse
Affiliation(s)
- Tamara M Fucase
- Biotechnology Center, Nuclear and Energy Research Institute (IPEN), Av. Lineu Prestes, 2242, São Paulo, SP CEP 05508-000 Brazil
| | - Juliana M Sciani
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Av. Vital Brasil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Ingrid Cavalcante
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Av. Vital Brasil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Vincent L Viala
- Biotechnology Center, Nuclear and Energy Research Institute (IPEN), Av. Lineu Prestes, 2242, São Paulo, SP CEP 05508-000 Brazil
| | - Bruno B Chagas
- Biotechnology Center, Nuclear and Energy Research Institute (IPEN), Av. Lineu Prestes, 2242, São Paulo, SP CEP 05508-000 Brazil
| | - Daniel C Pimenta
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Av. Vital Brasil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Patrick J Spencer
- Biotechnology Center, Nuclear and Energy Research Institute (IPEN), Av. Lineu Prestes, 2242, São Paulo, SP CEP 05508-000 Brazil
| |
Collapse
|
15
|
An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca. J Proteomics 2017; 151:214-231. [DOI: 10.1016/j.jprot.2016.06.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022]
|
16
|
Isolation and characterization of Bradykinin potentiating peptides from Agkistrodon bilineatus venom. Proteome Sci 2016; 14:1. [PMID: 26770072 PMCID: PMC4712559 DOI: 10.1186/s12953-016-0090-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/03/2022] Open
Abstract
Background Snake venom is a source of many pharmacologically important molecules. Agkistrodon bilineatus commonly known as Cantil, is spread over Central America particularly in Mexico and Costa Rica. From the venom of Agkistrodon bilineatus we have isolated and characterised six hypotensive peptides, and two bradykinin inhibitor peptides. The IC-50 value of four synthesized peptides was studied, towards angiotensin converting enzyme, in order to study the structure-function relationship of these peptides. Results The purification of the peptides was carried out by size exclusion chromatography, followed by reverse phase chromatography. Sequences of all peptides were determined applying MALDI-TOF/TOF mass spectrometry. These hypotensive peptides bear homology to bradykinin potentiating peptides and venom vasodilator peptide. The peptide with m/z 1355.53 (M + H)+1, and the corresponding sequence ZQWAQGRAPHPP, we identified for the first time. A precursor protein containing a fragment of this peptide was reported at genome level, (Uniprot ID P68515), in Bothrops insularis venom gland. These proline rich hypotensive peptides or bradykinin potentiating peptides are usually present in the venom of Crotalinae, and exhibit specificity in binding to the C domain of somatic angiotensin converting enzyme. Four of these hypotensive peptides, were selected and synthesized to obtain the required quantity to study their IC50 values in complex with the angiotensin converting enzyme. The peptide with the sequence ZLWPRPQIPP displayed the lowest IC50 value of 0.64 μM. The IC50 value of the peptide ZQWAQGRAPHPP was 3.63 μM. Conclusion The canonical snake venom BPPs classically display the IPP motif at the C-terminus. Our data suggest that the replacement of the highly conserved hydrophobic isoleucine by histidine does not affect the inhibitory activity, indicating that isoleucine is not mandatory to inhibit the angiotensin converting enzyme. The evaluation of IC 50 values show that the peptide with basic pI value exhibits a lower IC 50 value.
Collapse
|
17
|
Arcanjo DDR, Vasconcelos AG, Comerma-Steffensen SG, Jesus JR, Silva LP, Pires OR, Costa-Neto CM, Oliveira EB, Migliolo L, Franco OL, Restini CBA, Paulo M, Bendhack LM, Bemquerer MP, Oliveira AP, Simonsen U, Leite JRDSDA. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium. PLoS One 2015; 10:e0145071. [PMID: 26661890 PMCID: PMC4682775 DOI: 10.1371/journal.pone.0145071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/29/2015] [Indexed: 01/13/2023] Open
Abstract
Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.
Collapse
Affiliation(s)
- Daniel Dias Rufino Arcanjo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia–BIOTEC, Campus Ministro Reis Velloso–CMRV, Universidade Federal do Piauí –UFPI, Parnaíba, PI, Brazil
- Laboratório de Farmacologia Cardiovascular–LFC, Núcleo de Pesquisas em Plantas Medicinais–NPPM, Universidade Federal do Piauí –UFPI, Teresina, PI, Brazil
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia–BIOTEC, Campus Ministro Reis Velloso–CMRV, Universidade Federal do Piauí –UFPI, Parnaíba, PI, Brazil
| | | | - Joilson Ramos Jesus
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia–BIOTEC, Campus Ministro Reis Velloso–CMRV, Universidade Federal do Piauí –UFPI, Parnaíba, PI, Brazil
| | - Luciano Paulino Silva
- Laboratório de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Osmindo Rodrigues Pires
- Laboratório de Toxinologia, Instituto de Ciências Biológicas–ICB, Universidade de Brasília–UnB, Brasília, DF, Brazil
| | - Claudio Miguel Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto–FMRP, Universidade de São Paulo–USP, Ribeirão Preto, SP, Brazil
| | - Eduardo Brandt Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto–FMRP, Universidade de São Paulo–USP, Ribeirão Preto, SP, Brazil
| | - Ludovico Migliolo
- Centro de Análises Proteômicas e Bioquímicas–CAPB, Universidade Católica de Brasília–UCB, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas–CAPB, Universidade Católica de Brasília–UCB, Brasília, DF, Brazil
| | | | - Michele Paulo
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto–FCFRP, Universidade de São Paulo–USP, Ribeirão Preto, SP, Brazil
| | - Lusiane Maria Bendhack
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto–FCFRP, Universidade de São Paulo–USP, Ribeirão Preto, SP, Brazil
| | - Marcelo Porto Bemquerer
- Laboratório de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Aldeidia Pereira Oliveira
- Laboratório de Farmacologia Cardiovascular–LFC, Núcleo de Pesquisas em Plantas Medicinais–NPPM, Universidade Federal do Piauí –UFPI, Teresina, PI, Brazil
| | - Ulf Simonsen
- Pulmonary and Cardiovascular Pharmacology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia–BIOTEC, Campus Ministro Reis Velloso–CMRV, Universidade Federal do Piauí –UFPI, Parnaíba, PI, Brazil
- * E-mail:
| |
Collapse
|
18
|
Lopes DM, Junior NEG, Costa PPC, Martins PL, Santos CF, Carvalho EDF, Carvalho MDF, Pimenta DC, Cardi BA, Fonteles MC, Nascimento NRF, Carvalho KM. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake). Toxicon 2014; 90:36-44. [PMID: 25091347 DOI: 10.1016/j.toxicon.2014.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 01/09/2023]
Abstract
Venom glands of some snakes synthesize bradykinin-potentiating peptides (BPP's) which increase bradykinin-induced hypotensive effect and decrease angiotensin I vasopressor effect by angiotensin-converting enzyme (ACE) inhibition. The present study shows a new BPP (BPP-Cdc) isolated from Crotalus durissus cascavella venom: Pro-Asn-Leu-Pro-Asn-Tyr-Leu-Gly-Ile-Pro-Pro. Although BPP-Cdc presents the classical sequence IPP in the C-terminus, it has a completely atypical N-terminal sequence, which shows very low homology with all other BPPs isolated to date. The pharmacological effects of BPP-Cdc were compared to BBP9a from Bothrops jararaca and captopril. BPP-Cdc (1 μM) significantly increased BK-induced contractions (BK; 1 μM) on the guinea pig ileum by 267.8% and decreased angiotensin I-induced contractions (AngI; 10 nM) by 62.4% and these effects were not significantly different from those of BPP9a (1 μM) or captopril (200 nM). Experiments with 4-week hypertensive 2K-1C rats show that the vasopressor effect of AngI (10 ng) was decreased by 50 μg BPP-Cdc (69.7%), and this result was similar to that obtained with 50 μg BPP9a (69.8%). However, the action duration of BPP-Cdc (60 min) was 2 times greater than that of BPP-9a (30 min). On the other hand, the hypotensive effect of BK (250 ng) was significantly increased by 176.6% after BPP-Cdc (50 μg) administration, value 2.5 times greater than that obtained with BPP9a administered at the same doses (71.4%). In addition, the duration of the action of BPP-Cdc (120 min) was also at least 4 times greater than that of BPP-9a (30 min). Taken together, these results suggest that BPP-Cdc presents more selective action on arterial blood system than BPP9a. Besides the inhibition of ACE, it may present other mechanisms of action yet to be elucidated.
Collapse
Affiliation(s)
- Denise M Lopes
- Laboratório de Farmacologia Cardiovascular e Renal, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Norberto E G Junior
- Laboratório de Farmacologia Cardiovascular e Renal, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Paula P C Costa
- Laboratório de Farmacologia Cardiovascular e Renal, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Patrícia L Martins
- Laboratório de Farmacologia Cardiovascular e Renal, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Cláudia F Santos
- Laboratório de Farmacologia Cardiovascular e Renal, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Ellaine D F Carvalho
- GENPHARMA LTDA, Fortaleza, Ceará, Brazil; Faculdade de Medicina Christus, Fortaleza, Ceará, Brazil
| | - Maria D F Carvalho
- GENPHARMA LTDA, Fortaleza, Ceará, Brazil; Faculdade de Medicina Christus, Fortaleza, Ceará, Brazil; Laboratório de Toxinologia e Farmacologia Molecular, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Bruno A Cardi
- Laboratório de Toxinologia e Farmacologia Molecular, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Manassés C Fonteles
- Laboratório de Farmacologia Cardiovascular e Renal, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Nilberto R F Nascimento
- Laboratório de Farmacologia Cardiovascular e Renal, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Krishnamurti M Carvalho
- GENPHARMA LTDA, Fortaleza, Ceará, Brazil; Laboratório de Toxinologia e Farmacologia Molecular, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|