1
|
Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review). Toxicol In Vitro 2024; 98:105814. [PMID: 38582230 DOI: 10.1016/j.tiv.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Hemocompatibility evaluation is an important step in nanotoxicological studies. It is generally accepted that nanomaterials promote lysis of erythrocytes, blood clotting, alter phagocytosis, and upregulate pro-inflammatory cytokines. However, there are no standardized guidelines for testing nanomaterials hemocompatibility despite the fact that nanomaterials enter the bloodstream and interact with blood cells. In this review, the current knowledge on the ability of nanomaterials to induce distinct cell death modalities of erythrocytes is highlighted primarily focusing on hemolysis and eryptosis. This review aims to summarize the molecular mechanisms underlying erythrotoxicity of nanomaterials and critically compare the sensitivity and efficiency of hemolysis or eryptosis assays for nanomaterials blood compatibility testing. The list of eryptosis-inducing nanomaterials is growing, but it is still difficult to generalize how physico-chemical properties of nanoparticles affect eryptosis degree and molecular mechanisms involved. Thus, another aim of this review is to raise the awareness of eryptosis as a nanotoxicological tool to encourage the corresponding studies. It is worthwhile to consider adding eryptosis to in vitro nanomaterials hemocompatibility testing protocols and guidelines.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic.
| |
Collapse
|
2
|
Molecular Mechanisms and Pathophysiological Significance of Eryptosis. Int J Mol Sci 2023; 24:ijms24065079. [PMID: 36982153 PMCID: PMC10049269 DOI: 10.3390/ijms24065079] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Despite lacking the central apoptotic machinery, senescent or damaged RBCs can undergo an unusual apoptosis-like cell death, termed eryptosis. This premature death can be caused by, or a symptom of, a wide range of diseases. However, various adverse conditions, xenobiotics, and endogenous mediators have also been recognized as triggers and inhibitors of eryptosis. Eukaryotic RBCs are unique among their cell membrane distribution of phospholipids. The change in the RBC membrane composition of the outer leaflet occurs in a variety of diseases, including sickle cell disease, renal diseases, leukemia, Parkinson’s disease, and diabetes. Eryptotic erythrocytes exhibit various morphological alterations such as shrinkage, swelling, and increased granulation. Biochemical changes include cytosolic Ca2+ increase, oxidative stress, stimulation of caspases, metabolic exhaustion, and ceramide accumulation. Eryptosis is an effective mechanism for the elimination of dysfunctional erythrocytes due to senescence, infection, or injury to prevent hemolysis. Nevertheless, excessive eryptosis is associated with multiple pathologies, most notably anemia, abnormal microcirculation, and prothrombotic risk; all of which contribute to the pathogenesis of several diseases. In this review, we provide an overview of the molecular mechanisms, physiological and pathophysiological relevance of eryptosis, as well as the potential role of natural and synthetic compounds in modulating RBC survival and death.
Collapse
|
3
|
Galloylation of polyphenols alters their biological activity. Food Chem Toxicol 2017; 105:223-240. [DOI: 10.1016/j.fct.2017.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
|
4
|
Tao X, Thijssen S, Kotanko P, Ho CH, Henrie M, Stroup E, Handelman G. Improved dialytic removal of protein-bound uraemic toxins with use of albumin binding competitors: an in vitro human whole blood study. Sci Rep 2016; 6:23389. [PMID: 27001248 PMCID: PMC4802219 DOI: 10.1038/srep23389] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/03/2016] [Indexed: 01/29/2023] Open
Abstract
Protein-bound uraemic toxins (PBUTs) cause various deleterious effects in end-stage kidney disease patients, because their removal by conventional haemodialysis (HD) is severely limited by their low free fraction in plasma. Here we provide an experimental validation of the concept that the HD dialytic removal of PBUTs can be significantly increased by extracorporeal infusion of PBUT binding competitors. The binding properties of indoxyl sulfate (IS), indole-3-acetic acid (IAA) and hippuric acid (HIPA) and their binding competitors, ibuprofen (IBU), furosemide (FUR) and tryptophan (TRP) were studied in uraemic plasma. The effect of binding competitor infusion on fractional removal of PBUT was then quantified in an ex vivo single-pass HD model using uraemic human whole blood. The infusion of a combination of IBU and FUR increased the fractional removal of IS from 6.4 ± 0.1 to 18.3 ± 0.4%. IAA removal rose from 16.8 ± 0.3 to 34.5 ± 0.7%. TRP infusion increased the removal of IS and IAA to 10.5 ± 0.1% and 27.1 ± 0.3%, respectively. Moderate effects were observed on HIPA removal. Pre-dialyzer infusion of PBUT binding competitors into the blood stream can increase the HD removal of PBUTs. This approach can potentially be applied in current HD settings.
Collapse
Affiliation(s)
- Xia Tao
- University of Massachusetts Lowell, Lowell, MA, USA
- Renal Research Institute, NY, NY, USA
| | | | - Peter Kotanko
- Renal Research Institute, NY, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | |
Collapse
|
5
|
Officioso A, Alzoubi K, Lang F, Manna C. Hydroxytyrosol inhibits phosphatidylserine exposure and suicidal death induced by mercury in human erythrocytes: Possible involvement of the glutathione pathway. Food Chem Toxicol 2016; 89:47-53. [PMID: 26774912 DOI: 10.1016/j.fct.2016.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
Hydroxytyrosol (HT) is a phenolic antioxidant naturally occurring in virgin olive oil. In this study, we investigated the possible protective effects of HT on programmed suicidal death (eryptosis) induced by mercury (Hg) treatment in intact human erythrocytes (RBC). Our study confirms that the Hg-eryptosis is characterized by phosphatidylserine (PS) exposure at the cell surface, with cell shrinkage and ATP and glutathione depletion; calcium influx is also a key event that triggers eryptosis. Here we report that cell preconditioning with an optimal dose (1-5 μM) of HT prior to exposure to 2.5 μM HgCl2 causes a noteworthy decrease in PS-exposing RBC, almost restoring ATP and GSH content. Conversely, HT shows no effect against decrease in cell volume nor against influx of extracellular calcium. Taken together our data provide the first experimental evidence of the efficacy of HT in modulating the programmed suicidal death in non nucleated cells; the reported findings also confirm that the prevention of Hg toxicity should be regarded as an additional mechanism responsible for the health-promoting potential of this dietary phenol. Finally, virgin olive oil would appear to be a promising healthy food to reduce the adverse effects of chronic mercury exposure in humans.
Collapse
Affiliation(s)
- Arbace Officioso
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine, Second University of Naples, Naples, Italy; Department of Physiology, University of Tübingen, Germany
| | - Kousi Alzoubi
- Department of Physiology, University of Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Germany
| | - Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine, Second University of Naples, Naples, Italy.
| |
Collapse
|
6
|
Officioso A, Manna C, Alzoubi K, Lang F. Bromfenvinphos induced suicidal death of human erythrocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 126:58-63. [PMID: 26778435 DOI: 10.1016/j.pestbp.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
The organophosphorus pesticide bromfenvinphos ((E,Z)-O,O-diethyl-O-[1-(2,4-dichlorophenyl)-2-bromovinyl] phosphate) has been shown to decrease hematocrit and hemoglobin levels in blood presumably by triggering oxidative stress of erythrocytes. Oxidative stress is known to activate erythrocytic Ca(2+) permeable unselective cation channels leading to Ca(2+) entry and increase of cytosolic Ca(2+) activity ([Ca(2+)]i), which in turn triggers eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. The present study explored, whether and how bromfenvinphos induces eryptosis. To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca(2+)]i from Fluo3-fluorescence, and ROS formation from DCFDA dependent fluorescence. As a result, a 48hour exposure of human erythrocytes to bromfenvinphos (≥100μM) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo3-fluorescence, and significantly increased DCFDA fluorescence. The effect of bromfenvinphos on annexin-V-binding and forward scatter was significantly blunted, but not abolished by removal of extracellular Ca(2+). In conclusion, bromfenvinphos triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of ROS formation and Ca(2+) entry.
Collapse
Affiliation(s)
- Arbace Officioso
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany; Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Kousi Alzoubi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
7
|
Lang E, Bissinger R, Gulbins E, Lang F. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 2015; 20:758-67. [PMID: 25637185 DOI: 10.1007/s10495-015-1094-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, a suicidal death characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine exposure at the cell surface. As eryptotic erythrocytes are rapidly cleared from circulating blood, excessive eryptosis may lead to anemia. Moreover, eryptotic erythrocytes may adhere to the vascular wall and thus impede microcirculation. Stimulators of eryptosis include osmotic shock, oxidative stress and energy depletion. Mechanisms involved in the stimulation eryptosis include ceramide formation which may result from phospholipase A2 dependent formation of platelet activating factor (PAF) with PAF dependent stimulation of sphingomyelinases. Enhanced erythrocytic ceramide formation is observed in fever, sepsis, HUS, uremia, hepatic failure, and Wilson's disease. Enhanced eryptosis is further observed in iron deficiency, phosphate depletion, dehydration, malignancy, malaria, sickle-cell anemia, beta-thalassemia and glucose-6-phosphate dehydrogenase-deficiency. Moreover, eryptosis is triggered by osmotic shock and a wide variety of xenobiotics, which are again partially effective by enhancing ceramide abundance. Ceramide formation is inhibited by high concentrations of urea. As shown in Wilson's disease, pharmacological interference with ceramide formation may be a therapeutic option in the treatment of eryptosis inducing clinical disorders.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076, Tuebingen, Germany
| | | | | | | |
Collapse
|
8
|
Bissinger R, Malik A, Bouguerra G, Zhou Y, Singh Y, Abbès S, Lang F. Triggering of Suicidal Erythrocyte Death by the Antibiotic Ionophore Nigericin. Basic Clin Pharmacol Toxicol 2015; 118:381-9. [DOI: 10.1111/bcpt.12503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Rosi Bissinger
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Abaid Malik
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Ghada Bouguerra
- Department of Physiology; University of Tuebingen; Tuebingen Germany
- Laboratoire d'Hématologie Moléculaire et Cellulaire; Institut Pasteur de Tunis; Université de Tunis-El Manar; Tunis Tunisia
| | - Yuetao Zhou
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Yogesh Singh
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Salem Abbès
- Laboratoire d'Hématologie Moléculaire et Cellulaire; Institut Pasteur de Tunis; Université de Tunis-El Manar; Tunis Tunisia
| | - Florian Lang
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
9
|
Peter T, Bissinger R, Lang F. Erythrocyte Shrinkage and Cell Membrane Scrambling after Exposure to the Ionophore Nonactin. Basic Clin Pharmacol Toxicol 2015; 118:107-12. [DOI: 10.1111/bcpt.12455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/09/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas Peter
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Rosi Bissinger
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Florian Lang
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
10
|
Officioso A, Manna C, Alzoubi K, Lang F. Triggering of Erythrocyte Death by Triparanol. Toxins (Basel) 2015; 7:3359-71. [PMID: 26305256 PMCID: PMC4549755 DOI: 10.3390/toxins7083359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022] Open
Abstract
The cholesterol synthesis inhibitor Triparanol has been shown to trigger apoptosis in several malignancies. Similar to the apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress which may activate erythrocytic Ca2+ permeable unselective cation channels with subsequent Ca2+ entry and increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored whether and how Triparanol induces eryptosis. To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and ROS formation from 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence. As a result, a 48 h exposure of human erythrocytes to Triparanol (20 µM) significantly increased DCFDA fluorescence and significantly increased Fluo3-fluorescence. Triparanol (15 µM) significantly increased the percentage of annexin-V-binding cells, and significantly decreased the forward scatter. The effect of Triparanol on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. In conclusion, Triparanol leads to eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane. Triparanol is at least in part effective by stimulating ROS formation and Ca2+ entry.
Collapse
Affiliation(s)
- Arbace Officioso
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Kousi Alzoubi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
11
|
Abstract
The natural phosphoprotein phosphatase inhibitor cantharidin, primarily used for topical treatment of warts, has later been shown to trigger tumor cell apoptosis and is thus considered for the treatment of malignancy. Similar to apoptosis of tumor cells, erythrocytes may undergo eryptosis, a suicidal cell death characterized by cell shrinkage and translocation of cell membrane phosphatidylserine to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+-activity ([Ca2+]i), ceramide, oxidative stress and dysregulation of several kinases. Phosphatidylserine abundance at the erythrocyte surface was quantified utilizing annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide from antibody binding, and reactive oxidant species (ROS) from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. A 48 h treatment of human erythrocytes with cantharidin significantly increased the percentage of annexin-V-binding cells (≥10 μg/mL), significantly decreased forward scatter (≥25 μg/mL), significantly increased [Ca2+]i (≥25 μg/mL), but did not significantly modify ceramide abundance or ROS. The up-regulation of annexin-V-binding following cantharidin treatment was not significantly blunted by removal of extracellular Ca2+ but was abolished by kinase inhibitor staurosporine (1 μM) and slightly decreased by p38 inhibitor skepinone (2 μM). Exposure of erythrocytes to cantharidin triggers suicidal erythrocyte death with erythrocyte shrinkage and erythrocyte membrane scrambling, an effect sensitive to kinase inhibitors staurosporine and skepinone.
Collapse
|
12
|
Aljanadi O, Alzoubi K, Bissinger R, Lang F. Stimulation of Suicidal Erythrocyte Death by Naphthazarin. Basic Clin Pharmacol Toxicol 2015; 117:369-74. [DOI: 10.1111/bcpt.12420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/18/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Omar Aljanadi
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Rosi Bissinger
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tübingen Germany
| |
Collapse
|
13
|
Lang F, Jilani K, Lang E. Therapeutic potential of manipulating suicidal erythrocyte death. Expert Opin Ther Targets 2015; 19:1219-27. [PMID: 26013571 DOI: 10.1517/14728222.2015.1051306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Eryptosis, the suicidal erythrocyte death, is characterized by erythrocyte shrinkage and phosphatidylserine translocation to the erythrocyte surface. Eryptosis is triggered by cell stress such as energy depletion and oxidative stress, by Ca(2+)-entry, ceramide, caspases, calpain and/or altered activity of several kinases. Phosphatidylserine-exposing erythrocytes adhere to the vascular wall and may thus impede microcirculation. Eryptotic cells are further engulfed by phagocytes and thus rapidly cleared from circulation. AREAS COVERED Stimulation of eryptosis contributes to anemia of several clinical conditions such as metabolic syndrome, diabetes, malignancy, hepatic failure, heart failure, uremia, hemolytic uremic syndrome, sepsis, fever, dehydration, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose-6-phosphate dehydrogenase deficiency and Wilson's disease. On the other hand, eryptosis with subsequent clearance of infected erythrocytes in malaria may counteract parasitemia. EXPERT OPINION In theory, anemia due to excessive eryptosis could be alleviated by treatment with small molecules inhibiting eryptosis. In malaria, stimulators of eryptosis may accelerate death of infected erythrocytes and thus favorably influence the clinical course of the disease. Many small molecules inhibit or stimulate eryptosis. Several stimulators favorably influence murine malaria. Further preclinical and subsequent clinical studies are required to elucidate the therapeutic potential of stimulators or inhibitors of eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- University of Tübingen, Department of Physiology , Gmelinstr. 5, 72076 Tübingen , Germany +49 7071 29 72194 ; +49 7071 29 5618 ;
| | | | | |
Collapse
|
14
|
Induction of suicidal erythrocyte death by nelfinavir. Toxins (Basel) 2015; 7:1616-28. [PMID: 26008229 PMCID: PMC4448164 DOI: 10.3390/toxins7051616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022] Open
Abstract
The HIV protease inhibitor, nelfinavir, primarily used for the treatment of HIV infections, has later been shown to be effective in various infectious diseases including malaria. Nelfinavir may trigger mitochondria-independent cell death. Erythrocytes may undergo eryptosis, a mitochondria-independent suicidal cell death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress and increase of cytosolic Ca2+-activity ([Ca2+]i). During malaria, accelerated death of infected erythrocytes may decrease parasitemia and thus favorably influence the clinical course of the disease. In the present study, phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, and [Ca2+]i from Fluo3-fluorescence. A 48 h treatment of human erythrocytes with nelfinavir significantly increased the percentage of annexin-V-binding cells (≥5µg/mL), significantly decreased forward scatter (≥2.5µg/mL), significantly increased ROS abundance (10 µg/mL), and significantly increased [Ca2+]i (≥5 µg/mL). The up-regulation of annexin-V-binding following nelfinavir treatment was significantly blunted, but not abolished by either addition of the antioxidant N-acetylcysteine (1 mM) or removal of extracellular Ca2+. In conclusion, exposure of erythrocytes to nelfinavir induces oxidative stress and Ca2+ entry, thus leading to suicidal erythrocyte death characterized by erythrocyte shrinkage and erythrocyte membrane scrambling.
Collapse
|
15
|
Enhanced eryptosis following gramicidin exposure. Toxins (Basel) 2015; 7:1396-410. [PMID: 25915718 PMCID: PMC4448154 DOI: 10.3390/toxins7051396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
The peptide antibiotic and ionophore gramicidin has previously been shown to trigger apoptosis of nucleated cells. In analogy to apoptosis, the suicidal death of erythrocytes or eryptosis involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether gramicidin triggers eryptosis. To this end phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, red blood cell distribution width (RDW) from electronic particle counting, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, [Ca2+]i from Fluo3- and Fluo4 fluorescence, and ceramide abundance from binding of specific antibodies. As a result, a 24 h exposure of human erythrocytes to gramicidin significantly increased the percentage of annexin-V-binding cells (≥1 µg/mL), forward scatter (≥0.5 µg/mL) and hemolysis. Gramicidin enhanced ROS activity, [Ca2+]i and ceramide abundance at the erythrocyte surface. The stimulation of annexin-V-binding by gramicidin was significantly blunted but not abolished by removal of extracellular Ca2+. In conclusion, gramicidin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. Despite increase of [Ca2+]i, gramicidin increases cell volume and slightly reduces RWD.
Collapse
|
16
|
1,2,3,4,6-Penta-O-galloylglucose within Galla Chinensis Inhibits Human LDH-A and Attenuates Cell Proliferation in MDA-MB-231 Breast Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:276946. [PMID: 25918543 PMCID: PMC4396556 DOI: 10.1155/2015/276946] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 12/28/2022]
Abstract
A characteristic feature of aggressive malignancy is the overexpression of lactic acid dehydrogenase- (LDH-) A, concomitant to pericellular accumulation of lactate. In a recent high-throughput screening, we identified Rhus chinensis (Mill.) gallnut (RCG) (also known as Galla Chinensis) extract as a potent (IC50 < 1 µg/mL) inhibitor of human LDH-A (hLDH-A). In this study, through bioactivity guided fractionation of the crude extract, the data demonstrate that penta-1,2,3,4,6-O-galloyl-β-D-glucose (PGG) was a primary constituent responsible for hLDH-A inhibition, present at ~9.95 ± 0.34% dry weight. Theoretical molecular docking studies of hLDH-A indicate that PGG acts through competitive binding at the NADH cofactor site, effects confirmed by functional enzyme studies where the IC50 = 27.32 nM was reversed with increasing concentration of NADH. Moreover, we confirm protein expression of hLDH-A in MDA-231 human breast carcinoma cells and show that PGG was toxic (LC50 = 94.18 µM), parallel to attenuated lactic acid production (IC50 = 97.81 µM). In a 72-hour cell proliferation assay, PGG was found to be a potent cytostatic agent with ability to halt cell division (IC50 = 1.2 µM) relative to paclitaxel (IC50 < 100 nM). In summary, these findings demonstrate that PGG is a potent hLDH-A inhibitor with significant capacity to halt proliferation of human breast cancer cells.
Collapse
|
17
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
18
|
Alzoubi K, Calabrò S, Egler J, Faggio C, Lang F. Triggering of programmed erythrocyte death by alantolactone. Toxins (Basel) 2014; 6:3596-612. [PMID: 25533522 PMCID: PMC4280550 DOI: 10.3390/toxins6123596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/10/2014] [Accepted: 12/17/2014] [Indexed: 01/08/2023] Open
Abstract
The sesquiterpene alantolactone counteracts malignancy, an effect at least in part due to stimulation of suicidal death or apoptosis of tumor cells. Signaling of alantolactone induced apoptosis involves altered gene expression and mitochondrial depolarization. Erythrocytes lack mitochondria and nuclei but may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Cellular mechanisms involved in triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and oxidative stress. The present study explored, whether alantolactone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine-exposure at the erythrocyte surface from FITC-annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, ceramide abundance from binding of fluorescent antibodies, and oxidative stress from 2',7'-dichlorodihydrofluorescein-diacetate (DCFDA) fluorescence. As a result, a 48 h exposure of human erythrocytes to alantolactone (≥20 μM) significantly decreased erythrocyte forward scatter and increased the percentage of annexin-V-binding cells. Alantolactone significantly increased Fluo3 fluorescence (60 μM), ceramide abundance (60 μM) and DCFDA fluorescence (≥40 μM). The effect of alantolactone (60 μM) on annexin-V-binding was not significantly modified by removal of extracellular Ca2+. In conclusion, alantolactone stimulates suicidal erythrocyte death or eryptosis, an effect paralleled by increase of [Ca2+]i, ceramide abundance and oxidative stress.
Collapse
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Salvatrice Calabrò
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jasmin Egler
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Caterina Faggio
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S. Agata-Messina, Italy.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
19
|
Calabrò S, Alzoubi K, Bissinger R, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Ellipticine. Basic Clin Pharmacol Toxicol 2014; 116:485-92. [DOI: 10.1111/bcpt.12350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tübingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Rosi Bissinger
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tübingen Germany
| |
Collapse
|
20
|
Calabrò S, Alzoubi K, Bissinger R, Jilani K, Faggio C, Lang F. Enhanced eryptosis following juglone exposure. Basic Clin Pharmacol Toxicol 2014; 116:460-7. [PMID: 25348830 DOI: 10.1111/bcpt.12340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
Abstract
Juglone, a quinone isolated from Juglans mandshurica Maxim, has previously been shown to be effective against malignancy. The effect is at least partially due to stimulation of suicidal death or apoptosis of tumour cells. On the other hand, juglone has been shown to counteract apoptosis, for example, of neurons. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and breakdown of phosphatidylserine asymmetry of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Stimulators of eryptosis include increase in cytosolic Ca(2+) activity [(Ca(2+) )i]. This study explored whether juglone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine exposure at the erythrocyte surface from FITC annexin V binding, ceramide abundance from binding of fluorescent antibodies in flow cytometry and cytosolic ATP with a luciferin-luciferase-based assay. As a result, a 24-hr exposure of human erythrocytes to juglone (5 μM) significantly decreased erythrocyte forward scatter. Juglone (1-5 μM) significantly increased the percentage of annexin V binding cells. Juglone (5 μM) significantly increased ceramide abundance at the erythrocyte surface and decreased erythrocyte ATP concentration. The effect of juglone (10 μM) on annexin V binding was slightly but significantly blunted by removal of extracellular Ca(2+) and by addition of protein kinase C (PKC) inhibitor staurosporine (1 μM). In conclusion, juglone stimulates suicidal erythrocyte death or eryptosis at least in part by upregulation of ceramide abundance, energy depletion and activation of PKC.
Collapse
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology, University of Tuebingen, Tuebingen, Germany; Department of Biological and Environmental Sciences, University of Messina, S. Agata-Messina, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Bissinger R, Malik A, Warsi J, Jilani K, Lang F. Piperlongumine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel) 2014; 6:2975-88. [PMID: 25317837 PMCID: PMC4210880 DOI: 10.3390/toxins6102975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca²⁺-activity ([Ca²⁺]i), formation of ceramide, oxidative stress and activation of p38 kinase. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca²⁺]i from Fluo3 fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. RESULTS A 48 h exposure to piperlongumine (30 µM) was followed by significant decrease of forward scatter and increase of annexin-V-binding. Piperlongumine did not significantly modify [Ca²⁺]i and the effect was not dependent on presence of extracellular Ca²⁺. Piperlongumine significantly increased ROS formation and ceramide abundance. CONCLUSIONS Piperlongumine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca²⁺ but at least partially due to ROS and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Abaid Malik
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jamshed Warsi
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Kashif Jilani
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
22
|
Alzoubi K, Calabrò S, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Sulforaphane. Basic Clin Pharmacol Toxicol 2014; 116:229-35. [DOI: 10.1111/bcpt.12309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tuebingen Germany
| | - Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tuebingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S.Agata-Messina Italy
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S.Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tuebingen Germany
| |
Collapse
|
23
|
Bissinger R, Malik A, Honisch S, Warsi J, Jilani K, Lang F. In vitro sensitization of erythrocytes to programmed cell death following baicalein treatment. Toxins (Basel) 2014; 6:2771-86. [PMID: 25238045 PMCID: PMC4179159 DOI: 10.3390/toxins6092771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/27/2022] Open
Abstract
The polyphenolic flavonoid Baicalein has been shown to trigger suicidal death or apoptosis of tumor cells and is thus considered for the prevention and treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide. The present study explored whether Baicalein stimulates eryptosis. To this end, forward scatter was taken for measurement of cell volume, annexin-V-binding for phosphatidylserine-exposure, Fluo3 fluorescence for [Ca2+]i and fluorescent antibodies for ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Baicalein was followed by significant decrease of forward scatter (≥10 µM), significant increase of the percentage of annexin-V-binding cells (≥25 µM), significant increase of [Ca2+]i (50 µM) and significant increase of ceramide abundance (50 µM). The effect of Baicalein (50 µM) on annexin-V-binding was significantly blunted but not abrogated by removal of extracellular Ca2+. In conclusion, at the concentrations employed, Baicalein stimulates suicidal erythrocyte death or eryptosis, an effect at least in part due to the combined effects of Ca2+ entry and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Abaid Malik
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jamshed Warsi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, 38040 Faisalabad, Pakistan.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
24
|
Malik A, Bissinger R, Jilani K, Lang F. Stimulation of erythrocyte cell membrane scrambling by nystatin. Basic Clin Pharmacol Toxicol 2014; 116:47-52. [PMID: 24894380 DOI: 10.1111/bcpt.12279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022]
Abstract
The antifungal ionophore nystatin dissipates the Na(+) and K(+) gradients across the cell membrane, leading to cellular gain of Na(+) and cellular loss of K(+) . The increase of cellular Na(+) concentration may result in Ca(2+) accumulation in exchange for Na(+) . Increase of cytosolic Ca(2+) activity ([Ca(2+) ]i ) and loss of cellular K(+) foster apoptosis-like suicidal erythrocyte death or eryptosis, which is characterised by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the erythrocyte surface. The present study explored whether nystatin stimulates eryptosis. Cell volume was estimated from forward scatter (FSC), phosphatidylserine exposure from annexin V binding and [Ca(2+) ]i from Fluo3-fluorescence in flow cytometry. A 48-hr exposure to nystatin (15 μg/ml) was followed by a significant increase of [Ca(2+) ]i , a significant increase of annexin V binding and a significant decrease of FSC. The annexin V binding after nystatin treatment was significantly blunted in the nominal absence of extracellular Ca(2+) . Partial replacement of extracellular Na(+) with extracellular K(+) blunted the nystatin-induced erythrocyte shrinkage but increased [Ca(2+) ]i and annexin V binding. Nystatin triggers cell membrane scrambling, an effect at least partially due to entry of extracellular Ca(2+) .
Collapse
Affiliation(s)
- Abaid Malik
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
25
|
In vitro induction of erythrocyte phosphatidylserine translocation by the natural naphthoquinone shikonin. Toxins (Basel) 2014; 6:1559-74. [PMID: 24828755 PMCID: PMC4052252 DOI: 10.3390/toxins6051559] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 01/10/2023] Open
Abstract
Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation.
Collapse
|
26
|
Stimulation of erythrocyte cell membrane scrambling by mushroom tyrosinase. Toxins (Basel) 2014; 6:1096-108. [PMID: 24647148 PMCID: PMC3968379 DOI: 10.3390/toxins6031096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 01/23/2023] Open
Abstract
Background: Mushroom tyrosinase, a copper containing enzyme, modifies growth and survival of tumor cells. Mushroom tyrosinase may foster apoptosis, an effect in part due to interference with mitochondrial function. Erythrocytes lack mitochondria but are able to undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and activation of sphingomyelinase with subsequent formation of ceramide. The present study explored, whether tyrosinase stimulates eryptosis. Methods: Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 24 h exposure to mushroom tyrosinase (7 U/mL) was followed by a significant increase of [Ca2+]i, a significant increase of ceramide abundance, and a significant increase of annexin-V-binding. The annexin-V-binding following tyrosinase treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca2+. Tyrosinase did not significantly modify forward scatter. Conclusions: Tyrosinase triggers cell membrane scrambling, an effect, at least partially, due to entry of extracellular Ca2+ and ceramide formation.
Collapse
|