1
|
Rashid Z, Nabi A, Nabi N, Lateef I, Nisa Q, Fayaz T, Gulzar G, Bashir A, Shah MD, Zargar SM, Khan I, Nahvi AI, Itoo H, Shah RA, Padder BA. Selection of stable reference genes for qPCR expression of Colletotrichum lindemuthianum, the bean anthracnose pathogen. Fungal Biol 2024; 128:1771-1779. [PMID: 38796261 DOI: 10.1016/j.funbio.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/10/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Phaseolus vulgaris L., commonly known as the common bean, is a highly nutritious crop often called the "poor man's meat". However, it is susceptible to various diseases throughout the cropping season, with anthracnose caused by Colletotrichum lindemuthianum being a significant threat that leads to substantial losses. There is still a lack of understanding about the molecular basis of C. lindemuthianum pathogenicity. The first step in understanding this is to identify pathogenicity genes that express more during infection of common beans. A reverse transcription quantitative real-time PCR (qPCR) method can be used for virulence gene expression. However, this approach requires selecting appropriate reference genes to normalize relative gene expression data. Currently, there is no reference gene available for C. lindemuthianum. In this study, we selected eight candidate reference genes from the available genome of C. lindemuthianum to bridge the gap. These genes were ACT (Actin), β-tub (β-tubulin), EF (Elongation Factor), Cyt C (Cytochrome C), His H3 (Histone H3), CHS1 (Chitin synthetase), GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) and abfA (Alpha-l-Arabinofuranosidase A). The primers for these candidate reference genes were able to amplify cDNA only from the pathogen, demonstrating their specificity. The qPCR efficiency of the primers ranged from 80% to 103%. We analyzed the stability of gene expression in C. lindemuthianum by exposing the mycelium to nine different stress conditions. We employed algorithms, such as GeNorm, NormFinder, BestKeeper, and RefFinder tools, to identify the most stable gene. The analysis using these tools revealed that EF, GAPDH, and β-tub most stable genes, while ACT and CHS1 showed relatively low expression stability. A large number of potential effector genes have been identified through bioinformatics analysis in C. lindemuthianum. The stable genes for qPCR (EF and GAPDH) discovered in this study will aid the scientific community in determining the relative expression of C. lindemuthianum effector genes.
Collapse
Affiliation(s)
- Zainab Rashid
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Naziya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Irtifa Lateef
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Qadrul Nisa
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Tabia Fayaz
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Gazala Gulzar
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Adfar Bashir
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - M D Shah
- Research Center for Residue and Quality Control Analysis, SKUAST-Kashmir, 190025, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Imran Khan
- Division of Agricultural Statistics, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Afsah Iqbal Nahvi
- Extension Training Centre, Malangpora, Pulwama, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - H Itoo
- Ambri Apple Research Centre, Pahnoo, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Rafiq A Shah
- Ambri Apple Research Centre, Pahnoo, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India.
| |
Collapse
|
2
|
Dhanamjayulu P, Boga RB, Das R, Mehta A. Control of aflatoxin biosynthesis by sulfur containing benzimidazole derivatives: In-silico interaction, biological activity, and gene regulation of Aspergillus flavus. J Biotechnol 2023; 376:33-44. [PMID: 37748651 DOI: 10.1016/j.jbiotec.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Aspergillus flavus producing aflatoxins is one of the potent contaminants of raw food commodities during pre-and post-harvest crops. Aflatoxins are the group of secondary metabolites a subset of natural polyketides. Our major focus is on the inhibition of the biosynthesis pathway of aflatoxin by targeting the enzymes involved. Benzimidazoles are known antimicrobial compounds. In this study the sulfur containing benzimidazole derivatives were tested for their antifungal and antiaflatoxigenic activity. The fungal growth and aflatoxin production was analysed in culture medium as well as in the rice. Inhibition of specific genes was studied in terms of mRNA expression and the interaction of test compound with polyketide synthases by in-silico molecular docking. Substitution at the 6th position of 2-(2-thienyl) benzimidazole (2-TBD) reduced the antifungal property of benzimidazole but effectively inhibited the aflatoxin synthesis in the culture medium as well as in the rice from the toxigenic strain of A. flavus. Among the derivatives tested, the methyl group containing 2-(2-thienyl)- 6-methylbenzimidazole (6-MTBD) inhibited aflatoxin B1 most effectively followed by carboxylic group containing 2-(2-thienyl) benzimidazole-6-carboxylic acid (6-TBCA) with IC50 value of 12.36 and 18.25 µg/mL respectively. Molecular docking study shows that 2-(2-thienyl) benzimidazole-6-carbonitrile (6-CTBD) and 6-MTBD occupy same pocket on TE domain of PksA with similar range of binding energy, however the experimental data show a different effect on the biosynthesis of AFB1. 6-MTBD effectively inhibited the AFB1 synthesis (97%) while 6-CTBD could not (39.5%). Data obtained from the expression study also supports the experimental observations. These compounds are non-toxic to mammalian cells. These benzimidazole derivatives inhibit toxic secondary metabolites without affecting the growth of the fungi hence can be used during fermentation to avoid mycotoxin contamination.
Collapse
Affiliation(s)
- P Dhanamjayulu
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | | | - Ranjan Das
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Alka Mehta
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Flatschacher D, Eschlböck A, Zeilinger S. Identification and evaluation of suitable reference genes for RT-qPCR analyses in Trichoderma atroviride under varying light conditions. Fungal Biol Biotechnol 2023; 10:20. [PMID: 37789459 PMCID: PMC10546744 DOI: 10.1186/s40694-023-00167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Trichoderma atroviride is a competitive soil-borne mycoparasitic fungus with extensive applications as a biocontrol agent in plant protection. Despite its importance and application potential, reference genes for RT-qPCR analysis in T. atroviride have not been evaluated. Light exerts profound effects on physiology, such as growth, conidiation, secondary metabolism, and stress response in T. atroviride, as well as in other fungi. In this study, we aimed to address this gap by identifying stable reference genes for RT-qPCR experiments in T. atroviride under different light conditions, thereby enhancing accurate and reliable gene expression analysis in this model mycoparasite. We measured and compared candidate reference genes using commonly applied statistical algorithms. RESULTS Under cyclic light-dark cultivation conditions, tbp and rho were identified as the most stably expressed genes, while act1, fis1, btl, and sar1 were found to be the least stable. Similar stability rankings were obtained for cultures grown under complete darkness, with tef1 and vma1 emerging as the most stable genes and act1, rho, fis1, and btl as the least stable genes. Combining the data from both cultivation conditions, gapdh and vma1 were identified as the most stable reference genes, while sar1 and fis1 were the least stable. The selection of different reference genes had a significant impact on the calculation of relative gene expression, as demonstrated by the expression patterns of target genes pks4 and lox1. CONCLUSION The data emphasize the importance of validating reference genes for different cultivation conditions in fungi to ensure accurate interpretation of gene expression data.
Collapse
Affiliation(s)
- Daniel Flatschacher
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| | - Alexander Eschlböck
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Cadenillas LF, Hernandez C, Bailly S, Billerach G, Durrieu V, Bailly JD. Role of Polyphenols from the Aqueous Extract of Aloysia citrodora in the Inhibition of Aflatoxin B1 Synthesis in Aspergillus flavus. Molecules 2023; 28:5123. [PMID: 37446789 DOI: 10.3390/molecules28135123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin considered a potent carcinogen for humans that contaminates a wide range of crops. Various strategies have been established to reduce or block the synthesis of AFB1 in food and feed. The use of aqueous extracts derived from plants with high antioxidant activity has been a subject of study in recent years due to their efficacy in inhibiting AFB1. In this study, we assessed the effect of Aloysia citrodora aqueous extract on Aspergillus flavus growth and on AFB1 production. A bio-guided fractionation followed by High Performance Liquid Chromatography (HPLC) and Mass spectrometry analysis of the active fraction were applied to identify the candidate molecules responsible for the dose-effect inhibition of AFB1 synthesis. Our results revealed that polyphenols are the molecules implicated in AFB1 inhibition, achieving almost a total inhibition of the toxin production (99%). We identified luteolin-7-diglucuronide as one of the main constituents in A. citrodora extract, and demonstrated that it is able to inhibit, by itself, AFB1 production by 57%. This is the first study demonstrating the anti-Aflatoxin B1 effect of this molecule, while other polyphenols surely intervene in A. citrodora anti-AFB1 activity.
Collapse
Affiliation(s)
- Laura F Cadenillas
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Christopher Hernandez
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | | | - Guillaume Billerach
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
- UMR 1208 IATE Ingénierie des Agropolymères et Technologies Émergentes, INRAE, Institut Agro, Université de Montpellier, 2 Place Viala, 34060 Montpellier, France
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Jean-Denis Bailly
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
- École Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, CEDEX, 31076 Toulouse, France
| |
Collapse
|
5
|
Duan WY, Zhang SB, Lei JD, Qin YL, Li YN, Lv YY, Zhai HC, Cai JP, Hu YS. Protection of postharvest grains from fungal spoilage by biogenic volatiles. Appl Microbiol Biotechnol 2023; 107:3375-3390. [PMID: 37115251 DOI: 10.1007/s00253-023-12536-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Fungal spoilage of postharvest grains poses serious problems with respect to food safety, human health, and the economic value of grains. The protection of cereal grains from deleterious fungi is a critical aim in postharvest grain management. Considering the bulk volume of grain piles in warehouses or bins and food safety, fumigation with natural gaseous fungicides is a promising strategy to control fungal contamination on postharvest grains. Increasing research has focused on the antifungal properties of biogenic volatiles. This review summarizes the literature related to the effects of biogenic volatiles from microbes and plants on spoilage fungi on postharvest grains and highlights the underlying antifungal mechanisms. Key areas for additional research on fumigation with biogenic volatiles in postharvest grains are noted. The research described in this review supports the protective effects of biogenic volatiles against grain spoilage by fungi, providing a basis for their expanded application in the management of postharvest grains.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jun-Dong Lei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu-Liang Qin
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yan-Nan Li
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jing-Ping Cai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
6
|
Cadenillas LF, Hernandez C, Mathieu C, Bailly JD, Durrieu V. Screening of the Anti-Aflatoxin B1 Activity of Peruvian Plant Extracts: Relation with their Composition. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Yang Y, Yu L, Qiu X, Xiong D, Tian C. A putative terpene cyclase gene ( CcPtc1) is required for fungal development and virulence in Cytospora chrysosperma. Front Microbiol 2023; 14:1084828. [PMID: 36891381 PMCID: PMC9986285 DOI: 10.3389/fmicb.2023.1084828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Cytospora chrysosperma is a destructive plant pathogenic fungus, which causes canker disease on numerous woody plants. However, knowledge concerning the interaction between C. chrysosperma and its host remains limited. Secondary metabolites produced by phytopathogens often play important roles in their virulence. Terpene cyclases (TC), polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) are the key components for the synthesis of secondary metabolites. Here, we characterized the functions of a putative terpene type secondary metabolite biosynthetic core gene CcPtc1 in C. chrysosperma, which was significantly up-regulated in the early stages of infection. Importantly, deletion of CcPtc1 greatly reduced fungal virulence to the poplar twigs and they also showed significantly reduced fungal growth and conidiation compared with the wild-type (WT) strain. Furthermore, toxicity test of the crude extraction from each strain showed that the toxicity of crude extraction secreted by ΔCcPtc1 were strongly compromised in comparison with the WT strain. Subsequently, the untargeted metabolomics analyses between ΔCcPtc1 mutant and WT strain were conducted, which revealed 193 significantly different abundant metabolites (DAMs) inΔCcPtc1 mutant compared to the WT strain, including 90 significantly downregulated metabolites and 103 significantly up-regulated metabolites, respectively. Among them, four key metabolic pathways that reported to be important for fungal virulence were enriched, including pantothenate and coenzyme A (CoA) biosynthesis. Moreover, we also detected significant alterations in a series of terpenoids, among which (+)-ar-turmerone, pulegone, ethyl chrysanthemumate, and genipin were significantly down-regulated, while cuminaldehyde and (±)-abscisic acid were significantly up-regulated. In conclusion, our results demonstrated that CcPtc1 acts as a virulence-related secondary metabolism factor and provides new insights into the pathogenesis of C. chrysosperma.
Collapse
Affiliation(s)
- Yuchen Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiaolin Qiu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Inhibition of Aflatoxin B1 Synthesis in Aspergillus flavus by Mate ( Ilex paraguariensis), Rosemary ( Rosmarinus officinalis) and Green Tea ( Camellia sinensis) Extracts: Relation with Extract Antioxidant Capacity and Fungal Oxidative Stress Response Modulation. Molecules 2022; 27:molecules27238550. [PMID: 36500642 PMCID: PMC9739609 DOI: 10.3390/molecules27238550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Plant extracts may represent an ecofriendly alternative to chemical fungicides to limit aflatoxin B1 (AFB1) contamination of foods and feeds. Mate (Ilex paraguariensis), rosemary (Romarinus officinalis) and green tea (Camellia sinensis) are well known for their beneficial properties, which are mainly related to their richness in bioactive phenolic compounds. AFB1 production is inhibited, with varying efficiency, by acetone/water extracts from these three plants. At 0.45 µg dry matter (DM)/mL of culture medium, mate and green tea extracts were able to completely inhibit AFB1 production in Aspergillus flavus, and rosemary extract completely blocked AFB1 biosynthesis at 3.6 µg DM/mL of culture medium. The anti-AFB1 capacity of the extracts correlated strongly with their phenolic content, but, surprisingly, no such correlation was evident with their antioxidative ability, which is consistent with the ineffectiveness of these extracts against fungal catalase activity. Anti-AFB1 activity correlated more strongly with the radical scavenging capacity of the extracts. This is consistent with the modulation of SOD induced by mate and green tea in Aspergillus flavus. Finally, rutin, a phenolic compound present in the three plants tested in this work, was shown to inhibit AFB1 synthesis and may be responsible for the anti-mycotoxin effect reported herein.
Collapse
|
9
|
El Kantar S, Rajha HN, El Khoury A, Koubaa M, Nachef S, Debs E, Maroun RG, Louka N. Phenolic Compounds Recovery from Blood Orange Peels Using a Novel Green Infrared Technology Ired-Irrad®, and Their Effect on the Inhibition of Aspergillus flavus Proliferation and Aflatoxin B1 Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228061. [PMID: 36432159 PMCID: PMC9698718 DOI: 10.3390/molecules27228061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
The intensification of total phenolic compound (TPC) extraction from blood orange peels was optimized using a novel green infrared-assisted extraction technique (IRAE, Ired-Irrad®) and compared to the conventional extraction using a water bath (WB). Response surface methodology (RSM) allowed for the optimization of ethanol concentration (E), time (t), and temperature (T) in terms of extracted TPC and their antiradical activity, for both WB extraction and IRAE. Using WB extraction, the multiple response optimums as obtained after 4 h at 73 °C and using 79% ethanol/water were 1.67 g GAE/100 g for TPC and 59% as DPPH inhibition percentage. IRAE increased the extraction of TPC by 18% using 52% ethanol/water after less than 1 h at 79 °C. This novel technology has the advantage of being easily scalable for industrial usage. HPLC analysis showed that IRAE enhanced the recovery of gallic acid, resveratrol, quercetin, caffeic acid, and hesperidin. IR extracts exhibited high bioactivity by inhibiting the production of Aflatoxin B1 by 98.9%.
Collapse
Affiliation(s)
- Sally El Kantar
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Hiba N. Rajha
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon
- Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Université Saint-Joseph de Beyrouth, CST Mkalles Mar Roukos, Riad El Solh, P.O. Box 11-514, Beirut 1107 2050, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon
| | - Mohamed Koubaa
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
- Correspondence: ; Tel.: +33-344238841
| | - Simon Nachef
- Techno Heat Society, Al Firdaws Street, Sabtiyeh, Beirut 1100, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon
| | - Richard G. Maroun
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon
| | - Nicolas Louka
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon
| |
Collapse
|
10
|
Li Q, Zhao Y, Zuo X, Guo F, Li Y, Xie Y. Paeonol inhibits Aspergillus flavus via disrupting ergosterol biosynthesis, redox metabolism, and aflatoxin biosynthesis on rice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Lorán S, Carramiñana JJ, Juan T, Ariño A, Herrera M. Inhibition of Aspergillus Parasiticus Growth and Aflatoxins Production by Natural Essential Oils and Phenolic Acids. Toxins (Basel) 2022; 14:toxins14060384. [PMID: 35737045 PMCID: PMC9227641 DOI: 10.3390/toxins14060384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Aflatoxins represent a significant risk to food safety, and strategies are being implemented to reduce their entry into the food chain. The aim of this study was to evaluate the in vitro effect of four essential oils (EOs) (lavandins Grosso and Abrial, Origanum virens, and Rosmarinus officinalis) and four natural phenolic acids (PAs) (caffeic, chlorogenic, ferulic, and p-coumaric) on the growth and aflatoxins (B1, B2, G1, and G2) production by Aspergillus parasiticus. Minimal inhibitory concentration (MIC) and minimal fungicide concentration (MFC) were determined by the broth macrodilution method. Additionally, the mycelia weight was determined at concentration levels lower than MIC. The antiaflatoxigenic activity was evaluated in the two concentrations of the EOs right before MIC and at concentrations below the MIC value for the PAs. To this end, in-house validated methodology based on high-performance liquid chromatography with post-column photochemical derivatization and fluorescence detection (HPLC-PHRED-FLD) was used. EOs of O. virens and lavandins (Grosso and Abrial) completely inhibited mold growth. In addition, a significant reduction in mycelial mass (p < 0.05) was observed for all EOs and PAs at different concentrations. In all cases except for lavandin Abrial, EO concentrations just before the MIC value strongly reduced (p < 0.05) aflatoxins synthesis. Aflatoxins production was completely inhibited by all PAs at a concentration of 20 mM; although at low concentrations, mycotoxin production was stimulated in some cases. The present study provides a scientific basis for further study of the inhibiting mechanisms.
Collapse
Affiliation(s)
- Susana Lorán
- Instituto Agroalimentario de Aragón—IA2, Facultad de Veterinaria, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (S.L.); (J.J.C.); (T.J.); (M.H.)
| | - Juan José Carramiñana
- Instituto Agroalimentario de Aragón—IA2, Facultad de Veterinaria, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (S.L.); (J.J.C.); (T.J.); (M.H.)
| | - Teresa Juan
- Instituto Agroalimentario de Aragón—IA2, Facultad de Veterinaria, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (S.L.); (J.J.C.); (T.J.); (M.H.)
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
| | - Agustín Ariño
- Instituto Agroalimentario de Aragón—IA2, Facultad de Veterinaria, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (S.L.); (J.J.C.); (T.J.); (M.H.)
- Correspondence: ; Tel.: +34-876-554142
| | - Marta Herrera
- Instituto Agroalimentario de Aragón—IA2, Facultad de Veterinaria, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (S.L.); (J.J.C.); (T.J.); (M.H.)
| |
Collapse
|
12
|
Abbas A, Wright CW, El-Sawi N, Yli-Mattila T, Malinen AM. A methanolic extract of Zanthoxylum bungeanum modulates secondary metabolism regulator genes in Aspergillus flavus and shuts down aflatoxin production. Sci Rep 2022; 12:5995. [PMID: 35397670 PMCID: PMC8994782 DOI: 10.1038/s41598-022-09913-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/29/2022] [Indexed: 12/30/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a food-borne toxin produced by Aspergillus flavus and a few similar fungi. Natural anti-aflatoxigenic compounds are used as alternatives to chemical fungicides to prevent AFB1 accumulation. We found that a methanolic extract of the food additive Zanthoxylum bungeanum shuts down AFB1 production in A. flavus. A methanol sub-fraction (M20) showed the highest total phenolic/flavonoid content and the most potent antioxidant activity. Mass spectrometry analyses identified four flavonoids in M20: quercetin, epicatechin, kaempferol-3-O-rhamnoside, and hyperoside. The anti-aflatoxigenic potency of M20 (IC50: 2-4 µg/mL) was significantly higher than its anti-proliferation potency (IC50: 1800-1900 µg/mL). RNA-seq data indicated that M20 triggers significant transcriptional changes in 18 of 56 secondary metabolite pathways in A. flavus, including repression of the AFB1 biosynthesis pathway. Expression of aflR, the specific activator of the AFB1 pathway, was not changed by M20 treatment, suggesting that repression of the pathway is mediated by global regulators. Consistent with this, the Velvet complex, a prominent regulator of secondary metabolism and fungal development, was downregulated. Decreased expression of the conidial development regulators brlA and Medusa, genes that orchestrate redox responses, and GPCR/oxylipin-based signal transduction further suggests a broad cellular response to M20. Z. bungeanum extracts may facilitate the development of safe AFB1 control strategies.
Collapse
Affiliation(s)
- Asmaa Abbas
- Department of Life Technologies, University of Turku, 20014, Turku, Finland.,School of Pharmacy and Medical Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK.,Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Colin W Wright
- School of Pharmacy and Medical Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Nagwa El-Sawi
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Tapani Yli-Mattila
- Department of Life Technologies, University of Turku, 20014, Turku, Finland
| | - Anssi M Malinen
- Department of Life Technologies, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
13
|
Buitimea-Cantúa GV, Leija Gutiérrez HM, Buitimea-Cantúa NE, Del Refugio Rocha-Pizaña M, García-Triana A, Hernández-Morales A, Magaña-Barajas E, Molina-Torres J. The aflatoxin inhibitors capsaicin and piperine from Capsicum chinense and Piper nigrum fruits modulate the antioxidant system in Aspergillus parasiticus. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:358-368. [PMID: 35392762 DOI: 10.1080/03601234.2022.2060029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Several aflatoxin inhibitors can modulate the antioxidant system in fungi. In this work, the effect of the ethanolic extract of Capsicum chinense and Piper nigrum fruits, capsaicin, and piperine on the expression of the aflE, aflG, aflH, aflI, aflK, aflL, aflO, aflP, and aflQ genes involved in the aflatoxin biosynthetic pathway in Aspergillus parasiticus were studied by qRT-PCR analysis. As well as, the effect on the expression of fungal antioxidant genes (sod1, catA, and cat2) and enzymatic activity of catalase (CAT) and superoxide dismutase (SOD). Results reveal that the highest (p < 0.05) radial growth inhibition (68 and 86%) and aflatoxins production inhibition (73 and 80%) was observed with capsaicin and piperine respectively, at 300 µg/mL, instead of the ethanolic extract at the same concentration. The qRT-PCR analysis showed that compounds and extracts at 300 µg/mL induced a down-regulation of aflatoxin genes and an up-regulation on the fungal antioxidant genes. CAT activity increased by 23.15, 36.65, 51.40, and 65.50%, in the presence of C. chinense and P. nigrum extract, capsaicin, and piperine exposure, respectively. While SOD activity was not significantly impacted (p > 0.05). In conclusion, the capsaicin and piperine, two antifungal and anti-aflatoxigenic compounds produce an up-regulation of antioxidant defense genes accompanied by an enhancement of catalase enzymatic activity in A. parasiticus.
Collapse
Affiliation(s)
- Génesis V Buitimea-Cantúa
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, NL, México
- CINVESTAV, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, México
| | - Héctor Manuel Leija Gutiérrez
- Universidad Autónoma de Nuevo León, Centro de Investigación Facultad de Ciencias Físico Matemáticas, San Nicolás de los Garza, Nuevo León, México
| | - Nydia E Buitimea-Cantúa
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, NL, México
| | | | | | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles, San Luis Potosí, México
| | - Elisa Magaña-Barajas
- Programa de Ingeniería en Tecnologías de Alimentos, Universidad Estatal de Sonora, Perimetral y Ley, Hermosillo, SO, México
| | - Jorge Molina-Torres
- CINVESTAV, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, México
| |
Collapse
|
14
|
Costes LH, Lippi Y, Naylies C, Jamin EL, Genthon C, Bailly S, Oswald IP, Bailly JD, Puel O. The Solvent Dimethyl Sulfoxide Affects Physiology, Transcriptome and Secondary Metabolism of Aspergillus flavus. J Fungi (Basel) 2021; 7:jof7121055. [PMID: 34947037 PMCID: PMC8703953 DOI: 10.3390/jof7121055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dimethyl sulfoxide (DSMO) is a simple molecule widely used because of its great solvating ability, but this solvent also has little-known biological effects, especially on fungi. Aspergillus flavus is a notorious pathogenic fungus which may contaminate a large variety of crops worldwide by producing aflatoxins, endangering at the same time food safety and international trade. The aim of this study was to characterize the effect of DMSO on A. flavus including developmental parameters such as germination and sporulation, as well as its transcriptome profile using high-throughput RNA-sequencing assay and its impact on secondary metabolism (SM). After DMSO exposure, A. flavus displayed depigmented conidia in a dose-dependent manner. The four-day exposition of cultures to two doses of DMSO, chosen on the basis of depigmentation intensity (35 mM “low” and 282 mM “high”), led to no significant impact on fungal growth, germination or sporulation. However, transcriptomic data analysis showed that 4891 genes were differentially regulated in response to DMSO (46% of studied transcripts). A total of 4650 genes were specifically regulated in response to the highest dose of DMSO, while only 19 genes were modulated upon exposure to the lowest dose. Secondary metabolites clusters genes were widely affected by the DMSO, with 91% of clusters impacted at the highest dose. Among these, aflatoxins, cyclopiazonic acid and ustiloxin B clusters were totally under-expressed. The genes belonging to the AFB1 cluster were the most negatively modulated ones, the two doses leading to 63% and 100% inhibition of the AFB1 production, respectively. The SM analysis also showed the disappearance of ustiloxin B and a 10-fold reduction of cyclopiazonic acid level when A. flavus was treated by the higher DMSO dose. In conclusion, the present study showed that DMSO impacted widely A. flavus’ transcriptome, including secondary metabolism gene clusters with the aflatoxins at the head of down-regulated ones. The solvent also inhibits conidial pigmentation, which could illustrate common regulatory mechanisms between aflatoxins and fungal pigment pathways. Because of its effect on major metabolites synthesis, DMSO should not be used as solvent especially in studies testing anti-aflatoxinogenic compounds.
Collapse
Affiliation(s)
- Laura H. Costes
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Yannick Lippi
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Claire Naylies
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Emilien L. Jamin
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
- Metatoul-AXIOM Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse 31000, France
| | - Clémence Genthon
- INRAE, US1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France;
| | - Sylviane Bailly
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Isabelle P. Oswald
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Jean-Denis Bailly
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
- Correspondence:
| | - Olivier Puel
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| |
Collapse
|
15
|
Chang P, Tai B, Zheng M, Yang Q, Xing F. Inhibition of Aspergillus flavus growth and aflatoxin B1 production by natamycin. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aspergillus flavus causes huge crop losses, reduces crop quality and has adverse effects on human and animal health. A large amount of food contaminated with aflatoxin can greatly increase the risk of liver cancer. Therefore, prevention and control of aflatoxin production have aroused attention of research in various countries. Natamycin extracted from Streptomyces spp. has been widely used in production practice due to its good specificity and safety. Here, we found that natamycin could significantly inhibit fungal growth, conidia germination, ergosterol and AFB1 production by A. flavus in a dose-dependent manner. Scanning electron microscope analysis indicated that the number of conidia was decreased, the outer wall of conidia was destroyed, and the mycelia were shrivelled and tangled by natamycin. RNA-Seq data indicated that natamycin inhibited fungal growth and conidia development of A. flavus by significantly down-regulating some genes involved in ergosterol biosynthesis, such as Erg13, HMG1 and HMG2. It inhibited conidia germination by significantly down-regulating some genes related to conidia development, such as FluG and VosA. After natamycin exposure, the decreased ratio of aflS/aflR caused by the down-regulation of all the structural genes, which subsequently resulted in the suppression of AFB1 production. In conclusion, this study served to reveal the inhibitory mechanisms of natamycin on fungal growth and AFB1 biosynthesis in A. flavus and to provide solid evidence for its application in controlling AFB1 contamination.
Collapse
Affiliation(s)
- P. Chang
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China P.R
| | - B. Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China P.R
| | - M. Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China P.R
| | - Q. Yang
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China P.R
| | - F. Xing
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China P.R
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China P.R
| |
Collapse
|
16
|
Buitimea-Cantúa GV, Magaña-Barajas E, Buitimea-Cantúa NE, Leija Gutiérrez HM, Del Refugio Rocha-Pizaña M, Rosas-Burgos EC, Hernández-Morales A, Molina-Torres J. Down-regulation of aflatoxin biosynthetic genes in Aspergillus parasiticus by Heliopsis longipes roots and affinin for reduction of aflatoxin production. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:899-908. [PMID: 34487477 DOI: 10.1080/03601234.2021.1974273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Affinin present in Heliopsis longipes roots has been identified as an anti-aflatoxin molecule. However, its mechanism of action has yet to be clarified. Aflatoxins biosynthesis involves not less than 27 enzymatic reactions. In this work, the genes aflG, aflH, aflI, aflK, aflL, aflM, aflO, aflP, and aflQ of the aflatoxins cluster and the aflS gene encoding an internal regulatory factor involved in aflatoxins biosynthesis in Aspergillus parasiticus, were studied by qRT-PCR. Results demonstrated that ethanolic extract of H. longipes roots and affinin inhibit aflatoxin biosynthesis and fungal growth in a dose-dependent manner. At 300 µg/mL, ethanolic extract and affinin presented the highest inhibition of radial growth (86% and 94%) and aflatoxin production (68% and 80%). The qRT-PCR analysis demonstrated that nine tested genes were down-regulated by affinin and ethanolic extract. The most down-regulated was the aflK, a gene that encodes an enzyme cyclase with double function during the aflatoxin biosynthesis. While no significant down-regulation was obtaining for aflH gene. Exposure to affinin also resulted in decreased transcript levels of the internal regulator factor aflS. Based on our results, a model showing the regulatory mechanism in aflatoxin biosynthesis and its role in gene expression was proposed. In conclusion, affinin modulates the expression of several aflatoxin biosynthetic genes, leading to mycotoxin biosynthesis inhibition. Therefore, H. longipes roots is a suitable candidate to developed control strategies via lowering gene expressions as a future perspective in reducing aflatoxin contamination.
Collapse
Affiliation(s)
- Génesis V Buitimea-Cantúa
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, México
- Departamento de Biotecnología y Bioquímica, CINVESTAV, Irapuato, Guanajuato, México
| | - Elisa Magaña-Barajas
- Programa de Ingeniería en Tecnologías de Alimentos, Universidad Estatal de Sonora, Hermosillo, México
| | - Nydia E Buitimea-Cantúa
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, México
| | - Héctor Manuel Leija Gutiérrez
- Universidad Autónoma de Nuevo León, CICFM-Facultad de Ciencias Físico Matemáticas. San Nicolás de los Garza, NL, México
| | | | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, CINVESTAV, Irapuato, Guanajuato, México
| |
Collapse
|
17
|
Archer M, Xu J. Current Practices for Reference Gene Selection in RT-qPCR of Aspergillus: Outlook and Recommendations for the Future. Genes (Basel) 2021; 12:genes12070960. [PMID: 34202507 PMCID: PMC8307107 DOI: 10.3390/genes12070960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Aspergillus is a genus of filamentous fungi with vast geographic and ecological distributions. Species within this genus are clinically, agriculturally and biotechnologically relevant, leading to increasing interest in elucidating gene expression dynamics of key metabolic and physiological processes. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a sensitive and specific method of quantifying gene expression. A crucial step for comparing RT-qPCR results between strains and experimental conditions is normalisation to experimentally validated reference gene(s). In this review, we provide a critical analysis of current reference gene selection and validation practices for RT-qPCR gene expression analyses of Aspergillus. Of 90 primary research articles obtained through our PubMed query, 17 experimentally validated the reference gene(s) used. Twenty reference genes were used across the 90 studies, with beta-tubulin being the most used reference gene, followed by actin, 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase. Sixteen of the 90 studies used multiple reference genes for normalisation. Failing to experimentally validate the stability of reference genes can lead to conflicting results, as was the case for four studies. Overall, our review highlights the need to experimentally validate reference genes in RT-qPCR studies of Aspergillus.
Collapse
Affiliation(s)
| | - Jianping Xu
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 27934); Fax: +1-905-522-6066
| |
Collapse
|
18
|
Al Khoury A, Sleiman R, Atoui A, Hindieh P, Maroun RG, Bailly JD, El Khoury A. Antifungal and anti-aflatoxigenic properties of organs of Cannabis sativa L.: relation to phenolic content and antioxidant capacities. Arch Microbiol 2021; 203:4485-4492. [PMID: 34143269 DOI: 10.1007/s00203-021-02444-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Aflatoxin B1 is a carcinogenic mycotoxin that frequently contaminates crops worldwide. Current research indicates that the use of natural extracts to combat mycotoxin contamination may represent an eco-friendly, sustainable strategy to ensure food safety. Although Cannabis sativa L. has long been known for its psychoactive cannabinoids, it is also rich in many other bioactive molecules. This study examines extracts from various organs of Cannabis sativa L. to determine their ability to limit aflatoxin production and growth of Aspergillus flavus. The results indicate that flower extract is most effective for limiting the synthesis of aflatoxin B1, leading to an almost-complete inhibition of toxin production at a concentration of 0.225 mg dry matter per gram of culture medium. Since flower extract is rich in phenolic compounds, its total antioxidant ability and radical-scavenging capacity are determined. Compared with other anti-aflatoxigenic extracts, the anti-oxidative potential of Cannabis sativa L. flower extract appears moderate, suggesting that its anti-mycotoxin effect may be related to other bioactive compounds.
Collapse
Affiliation(s)
- Anthony Al Khoury
- Centre d'analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté Des Sciences, Université Saint-Joseph, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104, Lebanon.,Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 31300, Toulouse, France
| | - Rhend Sleiman
- Climate and Water Unit, Lebanese Agricultural Research Institute, Fanar station, P.O. Box 1965, Jdeidet El Maten, 1202, Lebanon
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Hadath Campus, P.O. Box 5, Beirut, 1104, Lebanon
| | - Pamela Hindieh
- Centre d'analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté Des Sciences, Université Saint-Joseph, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104, Lebanon
| | - Richard G Maroun
- Centre d'analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté Des Sciences, Université Saint-Joseph, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104, Lebanon
| | - Jean-Denis Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 31300, Toulouse, France.
| | - André El Khoury
- Centre d'analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté Des Sciences, Université Saint-Joseph, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104, Lebanon
| |
Collapse
|
19
|
Hernandez C, Cadenillas L, Maghubi AE, Caceres I, Durrieu V, Mathieu C, Bailly JD. Mimosa tenuiflora Aqueous Extract: Role of Condensed Tannins in Anti-Aflatoxin B1 Activity in Aspergillus flavus. Toxins (Basel) 2021; 13:toxins13060391. [PMID: 34072350 PMCID: PMC8228179 DOI: 10.3390/toxins13060391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.
Collapse
Affiliation(s)
- Christopher Hernandez
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Laura Cadenillas
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Anwar El Maghubi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
| | - Isaura Caceres
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Céline Mathieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
- Centre d’Application et de Traitement des Agro-Ressources (CATAR), INPT, Toulouse, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Jean-Denis Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Correspondence: ; Tel.: +33-56-1193-229
| |
Collapse
|
20
|
Montalbano S, Degola F, Bartoli J, Bisceglie F, Buschini A, Carcelli M, Feretti D, Galati S, Marchi L, Orsoni N, Pelosi G, Pioli M, Restivo FM, Rogolino D, Scaccaglia M, Serra O, Spadola G, Viola GCV, Zerbini I, Zani C. The AFLATOX ® Project: Approaching the Development of New Generation, Natural-Based Compounds for the Containment of the Mycotoxigenic Phytopathogen Aspergillus flavus and Aflatoxin Contamination. Int J Mol Sci 2021; 22:4520. [PMID: 33926042 PMCID: PMC8123576 DOI: 10.3390/ijms22094520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
The control of the fungal contamination on crops is considered a priority by the sanitary authorities of an increasing number of countries, and this is also due to the fact that the geographic areas interested in mycotoxin outbreaks are widening. Among the different pre- and post-harvest strategies that may be applied to prevent fungal and/or aflatoxin contamination, fungicides still play a prominent role; however, despite of countless efforts, to date the problem of food and feed contamination remains unsolved, since the essential factors that affect aflatoxins production are various and hardly to handle as a whole. In this scenario, the exploitation of bioactive natural sources to obtain new agents presenting novel mechanisms of action may represent a successful strategy to minimize, at the same time, aflatoxin contamination and the use of toxic pesticides. The Aflatox® Project was aimed at the development of new-generation inhibitors of aflatoxigenic Aspergillus spp. proliferation and toxin production, through the modification of naturally occurring molecules: a panel of 177 compounds, belonging to the thiosemicarbazones class, have been synthesized and screened for their antifungal and anti-aflatoxigenic potential. The most effective compounds, selected as the best candidates as aflatoxin containment agents, were also evaluated in terms of cytotoxicity, genotoxicity and epi-genotoxicity to exclude potential harmful effect on the human health, the plants on which fungi grow and the whole ecosystem.
Collapse
Affiliation(s)
- Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Jennifer Bartoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
- Interdepartmental Centre for Molecular and Translational Oncology COMT, University of Parma, 43124 Parma, PR, Italy;
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, BS, Italy; (D.F.); (G.C.V.V.); (I.Z.); (C.Z.)
| | - Serena Galati
- Interdepartmental Centre for Molecular and Translational Oncology COMT, University of Parma, 43124 Parma, PR, Italy;
| | - Laura Marchi
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Via Gramsci 14, 43125 Parma, PR, Italy;
| | - Nicolò Orsoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Marianna Pioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Francesco M. Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Olga Serra
- Medical Oncology and Breast Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, PR, Italy;
| | - Giorgio Spadola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Gaia C. V. Viola
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, BS, Italy; (D.F.); (G.C.V.V.); (I.Z.); (C.Z.)
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, BS, Italy; (D.F.); (G.C.V.V.); (I.Z.); (C.Z.)
| | - Claudia Zani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, BS, Italy; (D.F.); (G.C.V.V.); (I.Z.); (C.Z.)
| |
Collapse
|
21
|
The Potential of Plant-Based Bioactive Compounds on Inhibition of Aflatoxin B1 Biosynthesis and Down-regulation of aflR, aflM and aflP Genes. Antibiotics (Basel) 2020; 9:antibiotics9110728. [PMID: 33113979 PMCID: PMC7690750 DOI: 10.3390/antibiotics9110728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 01/11/2023] Open
Abstract
The use of plant extracts in pre- and post-harvest disease management of agricultural crops to cope with aflatoxin B1 contamination has shown great promise due to their capability in managing toxins and safe-keeping the quality. We investigated the anti-aflatoxigenic effect of multiple doses of eight plant extracts (Heracleum persicum, Peganum harmala, Crocus sativus, Trachyspermum ammi, Rosmarinus officinalis, Anethum graveolens, Berberis vulgaris, Berberis thunbergii) on Aspergillus flavus via LC-MS and the down-regulatory effect of them on aflR, aflM and aflP genes involved in the aflatoxin B1 biosynthesis pathway using RT-qPCR analyses. Our results showed that H. persicum (4 mg/mL), P. harmala (6 mg/mL) and T. ammi (2 mg/mL) completely stopped the production of aflatoxin B1, without inducing significant changes in A. flavus growth. Furthermore, our findings showed a highly significant correlation between the gene expression and the aflatoxin B1 biosynthesis, such that certain doses of the extracts reduced or blocked the expression of the aflR, aflM and aflP and consequently reduced the synthesis of aflatoxin B1. Interestingly, compared to the regulatory gene (aflR), the down-regulation of expression in the structural genes (aflM and aflP) was more consistent and correlated with the inhibition of aflatoxin B1 production. Overall, this study reveals the anti-aflatoxigenic mechanisms of the selected plant extracts at the gene expression level and provides evidence for their use in plant and crop protection.
Collapse
|
22
|
Uka V, Cary JW, Lebar MD, Puel O, De Saeger S, Diana Di Mavungu J. Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review. Compr Rev Food Sci Food Saf 2020; 19:2797-2842. [PMID: 33337039 DOI: 10.1111/1541-4337.12638] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Filamentous fungi represent a rich source of extrolites, including secondary metabolites (SMs) comprising a great variety of astonishing structures and interesting bioactivities. State-of-the-art techniques in genome mining, genetic manipulation, and secondary metabolomics have enabled the scientific community to better elucidate and more deeply appreciate the genetic and biosynthetic chemical arsenal of these microorganisms. Aspergillus flavus is best known as a contaminant of food and feed commodities and a producer of the carcinogenic family of SMs, aflatoxins. This fungus produces many SMs including polyketides, ribosomal and nonribosomal peptides, terpenoids, and other hybrid molecules. This review will discuss the chemical diversity, biosynthetic pathways, and biological/ecological role of A. flavus SMs, as well as their significance concerning food safety and security.
Collapse
Affiliation(s)
- Valdet Uka
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Division of Pharmacy, Faculty of Medicine, University of Pristina, Pristina, Kosovo
| | - Jeffrey W Cary
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Matthew D Lebar
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Bracarense APFL, Pierron A, Pinton P, Gerez JR, Schatzmayr G, Moll WD, Zhou T, Oswald IP. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: In vivo analysis in piglets. Food Chem Toxicol 2020; 140:111241. [PMID: 32194137 DOI: 10.1016/j.fct.2020.111241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022]
Abstract
Ingestion of deoxynivalenol (DON), one of the most common mycotoxin contaminants of cereals, leads to adverse effects for animal and human health. Bacterial biotransformation is a strategy to mitigate the toxicity of this mycotoxin. The present study aims to evaluate the toxicity of two bacterial biotranformation products of DON: 3-epi-deoxynivalenol (3-epi-DON) and de-epoxy-deoxynivalenol (DOM-1) through zootechnical, hematological, histological and immunological assays. Twenty-four 4-weeks-old piglets received a control diet or a diet contaminated with 3 mg kg-1 DON, DOM-1, or 3-epi-DON for 7 days. Sample tissues were collected for histomorphometrical analysis, expression of cytokines and cell protein junctions. The zootechnical and hematological parameters were not modulated by any treatment. Ingestion of DON induced histological alterations in the intestine, liver and lymphoid organs, as well as an overexpression of pro-inflammatory cytokines, E-cadherin and occludin. These changes were not observed in piglets receiving the DOM-1 and 3-epi-DON contaminated diets. Pigs fed 3-epi-DON contaminated diet showed an increase in IgM levels in comparison with other diets, while no change was observed in IgA and IgG levels among the diets. Our results indicate that DOM-1 and 3-epi-DON are not toxic for piglets; thus bacterial biotransformation seems to be a sustainable alternative to reduce mycotoxin toxicity.
Collapse
Affiliation(s)
- Ana Paula F L Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, 86057-970, Londrina, PR, Brazil.
| | - Alix Pierron
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRAe, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Philippe Pinton
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRAe, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Juliana R Gerez
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, 86057-970, Londrina, PR, Brazil
| | | | | | - Ting Zhou
- Guelph Food Research Center Agriculture &Agri-Food Canada, Guelph, Ontario, N1G 5C, Canada
| | - Isabelle P Oswald
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRAe, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
24
|
Recent progress of the effect of environmental factors on Aspergillus flavus growth and aflatoxins production on foods. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyz040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
The contamination of Aspergillus flavus and subsequent aflatoxins (AFs) has been considered as one of the most serious food safety problems due to their acute and chronic adverse effects on humans and animals. This review collects the available information from recent years on the effect of the major environmental factors such as water activity (aw), temperature, CO2, and pH on the fungal growth, the expression of AFs-related genes, and AFs production by A. flavus on foods. In particular, the relationship between the relative expression of key regulatory (aflR and aflS) and structural genes (aflD, aflO, aflQ, etc.) and AFs production under different environmental conditions are collected and discussed. The information collected in this review can be used to design control strategies of A. flavus and AFs contamination in practical applications, primarily during storage and processing. These data suggest that integrating various post-harvest methods with synergistic functions may be more efficient for the control of A. flavus growth and AFs production, although the individual environmental factors alone have an impact.
Collapse
|
25
|
Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins (Basel) 2020; 12:toxins12030150. [PMID: 32121226 PMCID: PMC7150809 DOI: 10.3390/toxins12030150] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
The study of fungal species evolved radically with the development of molecular techniques and produced new evidence to understand specific fungal mechanisms such as the production of toxic secondary metabolites. Taking advantage of these technologies to improve food safety, the molecular study of toxinogenic species can help elucidate the mechanisms underlying toxin production and enable the development of new effective strategies to control fungal toxicity. Numerous studies have been made on genes involved in aflatoxin B1 (AFB1) production, one of the most hazardous carcinogenic toxins for humans and animals. The current review presents the roles of these different genes and their possible impact on AFB1 production. We focus on the toxinogenic strains Aspergillus flavus and A. parasiticus, primary contaminants and major producers of AFB1 in crops. However, genetic reports on A. nidulans are also included because of the capacity of this fungus to produce sterigmatocystin, the penultimate stable metabolite during AFB1 production. The aim of this review is to provide a general overview of the AFB1 enzymatic biosynthesis pathway and its link with the genes belonging to the AFB1 cluster. It also aims to illustrate the role of global environmental factors on aflatoxin production and the recent data that demonstrate an interconnection between genes regulated by these environmental signals and aflatoxin biosynthetic pathway.
Collapse
|
26
|
Ren Y, Jin J, Zheng M, Yang Q, Xing F. Ethanol Inhibits Aflatoxin B 1 Biosynthesis in Aspergillus flavus by Up-Regulating Oxidative Stress-Related Genes. Front Microbiol 2020; 10:2946. [PMID: 32010073 PMCID: PMC6978751 DOI: 10.3389/fmicb.2019.02946] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023] Open
Abstract
As the most carcinogenic, toxic, and economically costly mycotoxins, aflatoxin B1 (AFB1) is primarily biosynthesized by Aspergillus flavus and Aspergillus parasiticus. Aflatoxin biosynthesis is related to oxidative stress and functions as a second line of defense from excessive reactive oxygen species. Here, we find that ethanol can inhibit fungal growth and AFB1 production by A. flavus in a dose-dependent manner. Then, the ethanol’s molecular mechanism of action on AFB1 biosynthesis was revealed using a comparative transcriptomic analysis. RNA-Seq data indicated that all the genes except for aflC in the aflatoxin gene cluster were down-regulated by 3.5% ethanol. The drastic repression of aflatoxin structural genes including the complete inhibition of aflK and aflLa may be correlated with the down-regulation of the transcription regulator genes aflR and aflS in the cluster. This may be due to the repression of several global regulator genes and the subsequent overexpression of some oxidative stress-related genes. The suppression of several key aflatoxin genes including aflR, aflD, aflM, and aflP may also be associated with the decreased expression of the global regulator gene veA. In particular, ethanol exposure caused the decreased expression of stress response transcription factor srrA and the overexpression of bZIP transcription factor ap-1, C2H2 transcription factors msnA and mtfA, together with the enhanced levels of anti-oxidant enzymatic genes including Cat, Cat1, Cat2, CatA, and Cu, Zn superoxide dismutase gene sod1. Taken together, these RNA-Seq data strongly suggest that ethanol inhibits AFB1 biosynthesis by A. flavus via enhancing fungal oxidative stress response. In conclusion, this study served to reveal the anti-aflatoxigenic mechanisms of ethanol in A. flavus and to provide solid evidence for its use in controlling AFB1 contamination.
Collapse
Affiliation(s)
- Yaoyao Ren
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jing Jin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mumin Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fuguo Xing
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Rajha HN, Abi-Khattar AM, El Kantar S, Boussetta N, Lebovka N, Maroun RG, Louka N, Vorobiev E. Comparison of aqueous extraction efficiency and biological activities of polyphenols from pomegranate peels assisted by infrared, ultrasound, pulsed electric fields and high-voltage electrical discharges. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102212] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Effect of allyl isothiocyanate on transcriptional profile, aflatoxin synthesis, and Aspergillus flavus growth. Food Res Int 2019; 128:108786. [PMID: 31955757 DOI: 10.1016/j.foodres.2019.108786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The goals of this study were to determine the efficacy of allyl isothiocyanate (AITC) against the growth of A. flavus and Aflatoxin B1 (AFB1) production as well as to evaluate changes in the transcriptome profile when colonizing maize. A. flavus was inoculated in potato dextrose agar (PDA), the plates were placed inside glass jars and the mycelial growth (MG) was monitored for 7 d. Likewise, maize grains were contaminated with A. flavus in glass jars of 1 L and treated with 0.125, 0.25, 0.5, 1 and 5 µL of AITC. The moisture content (MC) of grains was 15 and 21%. After 7 days of storage, the MG was significantly reduced in doses higher than 0.125 µL/L of AITC. All doses of AITC reduced significantly the fungal growth and AFB1 production in maize after 30 d, regardless of MC. The transcriptional changes caused by AITC treatment showed significant overexpression for environmental and global transcription factors. These results suggest that AITC could be used as a fumigant to avoid the growth of A. flavus and the production of AFB1, moreover, confirm transcriptional alteration of genes involved in AFB1 and other processes key for normal fungal growth and development.
Collapse
|
29
|
Dallabona C, Pioli M, Spadola G, Orsoni N, Bisceglie F, Lodi T, Pelosi G, Restivo FM, Degola F. Sabotage at the Powerhouse? Unraveling the Molecular Target of 2-Isopropylbenzaldehyde Thiosemicarbazone, a Specific Inhibitor of Aflatoxin Biosynthesis and Sclerotia Development in Aspergillus flavus, Using Yeast as a Model System. Molecules 2019; 24:molecules24162971. [PMID: 31426298 PMCID: PMC6719062 DOI: 10.3390/molecules24162971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022] Open
Abstract
Amongst the various approaches to contain aflatoxin contamination of feed and food commodities, the use of inhibitors of fungal growth and/or toxin biosynthesis is showing great promise for the implementation or the replacement of conventional pesticide-based strategies. Several inhibition mechanisms were found taking place at different levels in the biology of the aflatoxin-producing fungal species such as Aspergillus flavus: compounds that influence aflatoxin production may block the biosynthetic pathway through the direct control of genes belonging to the aflatoxin gene cluster, or interfere with one or more of the several steps involved in the aflatoxin metabolism upstream. Recent findings pointed to mitochondrial functionality as one of the potential targets of some aflatoxin inhibitors. Additionally, we have recently reported that the effect of a compound belonging to the class of thiosemicarbazones might be related to the energy generation/carbon flow and redox homeostasis control by the fungal cell. Here, we report our investigation about a putative molecular target of the 3-isopropylbenzaldehyde thiosemicarbazone (mHtcum), using the yeast Saccharomyces cerevisiae as model system, to demonstrate how the compound can actually interfere with the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Marianna Pioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Giorgio Spadola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Nicolò Orsoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Francesco Maria Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy.
| |
Collapse
|
30
|
Degola F, Marzouk B, Gori A, Brunetti C, Dramis L, Gelati S, Buschini A, Restivo FM. Aspergillus flavus as a Model System to Test the Biological Activity of Botanicals: An Example on Citrullus colocynthis L. Schrad. Organic Extracts. Toxins (Basel) 2019; 11:toxins11050286. [PMID: 31121811 PMCID: PMC6563254 DOI: 10.3390/toxins11050286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Citrullus colocynthis L. Schrader is an annual plant belonging to the Cucurbitaceae family, widely distributed in the desert areas of the Mediterranean basin. Many pharmacological properties (anti-inflammatory, anti-diabetic, analgesic, anti-epileptic) are ascribed to different organs of this plant; extracts and derivatives of C. colocynthis are used in folk Berber medicine for the treatment of numerous diseases-such as rheumatism arthritis, hypertension bronchitis, mastitis, and even cancer. Clinical studies aimed at confirming the chemical and biological bases of pharmacological activity assigned to many plant/herb extracts used in folk medicine often rely on results obtained from laboratory preliminary tests. We investigated the biological activity of some C. colocynthis stem, leaf, and root extracts on the mycotoxigenic and phytopathogenic fungus Aspergillus flavus, testing a possible correlation between the inhibitory effect on aflatoxin biosynthesis, the phytochemical composition of extracts, and their in vitro antioxidant capacities.
Collapse
Affiliation(s)
- Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Belsem Marzouk
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy of Monastir, University of Monastir, 5000 Monastir, Tunisia.
| | - Antonella Gori
- Tree and Timber Institute (IVALSA), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Cecilia Brunetti
- Tree and Timber Institute (IVALSA), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
- Department of Agriculture, Environment, Food and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy.
| | - Lucia Dramis
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Stefania Gelati
- Department of Packaging, Experimental Station for the Food Preserving Industry (SSICA), Viale Tanara 31/A, 43121 Parma, Italy.
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
- Center for Molecular and Translational Oncology, Parco Area delle Scienze, 43124 Parma, Italy.
| | - Francesco M Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
31
|
Ren Y, Jin J, Zheng M, Yang Q, Xing F. Ethanol Inhibits Aflatoxin B 1 Biosynthesis in Aspergillus flavus by Up-Regulating Oxidative Stress-Related Genes. Front Microbiol 2019. [PMID: 32010073 DOI: 10.3389/fmicb.2019.02946/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
As the most carcinogenic, toxic, and economically costly mycotoxins, aflatoxin B1 (AFB1) is primarily biosynthesized by Aspergillus flavus and Aspergillus parasiticus. Aflatoxin biosynthesis is related to oxidative stress and functions as a second line of defense from excessive reactive oxygen species. Here, we find that ethanol can inhibit fungal growth and AFB1 production by A. flavus in a dose-dependent manner. Then, the ethanol's molecular mechanism of action on AFB1 biosynthesis was revealed using a comparative transcriptomic analysis. RNA-Seq data indicated that all the genes except for aflC in the aflatoxin gene cluster were down-regulated by 3.5% ethanol. The drastic repression of aflatoxin structural genes including the complete inhibition of aflK and aflLa may be correlated with the down-regulation of the transcription regulator genes aflR and aflS in the cluster. This may be due to the repression of several global regulator genes and the subsequent overexpression of some oxidative stress-related genes. The suppression of several key aflatoxin genes including aflR, aflD, aflM, and aflP may also be associated with the decreased expression of the global regulator gene veA. In particular, ethanol exposure caused the decreased expression of stress response transcription factor srrA and the overexpression of bZIP transcription factor ap-1, C2H2 transcription factors msnA and mtfA, together with the enhanced levels of anti-oxidant enzymatic genes including Cat, Cat1, Cat2, CatA, and Cu, Zn superoxide dismutase gene sod1. Taken together, these RNA-Seq data strongly suggest that ethanol inhibits AFB1 biosynthesis by A. flavus via enhancing fungal oxidative stress response. In conclusion, this study served to reveal the anti-aflatoxigenic mechanisms of ethanol in A. flavus and to provide solid evidence for its use in controlling AFB1 contamination.
Collapse
Affiliation(s)
- Yaoyao Ren
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jing Jin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mumin Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fuguo Xing
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Bailly S, Mahgubi AE, Carvajal-Campos A, Lorber S, Puel O, Oswald IP, Bailly JD, Orlando B. Occurrence and Identification of Aspergillus Section Flavi in the Context of the Emergence of Aflatoxins in French Maize. Toxins (Basel) 2018; 10:E525. [PMID: 30544593 PMCID: PMC6315360 DOI: 10.3390/toxins10120525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Aflatoxins (AFs) are secondary metabolites produced by Aspergillus section Flavi during their development, particularly in maize. It is widely accepted that AFB1 is a major contaminant in regions where hot climate conditions favor the development of aflatoxigenic species. Global warming could lead to the appearance of AFs in maize produced in Europe. This was the case in 2015, in France, when the exceptionally hot and dry climatic conditions were favorable for AF production. Our survey revealed AF contamination of 6% (n = 114) of maize field samples and of 15% (n = 81) of maize silo samples analyzed. To understand the origin of the contamination, we characterized the mycoflora in contaminated samples and in samples produced in the same geographic and climatic conditions but with no AFs. A special focus was placed on Aspergillus section Flavi. A total of 67 strains of Aspergillus section Flavi were isolated from the samples. As expected, the strains were observed in all AF+ samples and, remarkably, also in almost 40% of AF- samples, demonstrating the presence of these potent toxin producers in fields in France. A. flavus was the most frequent species of the section Flavi (69% of the strains). But surprisingly, A. parasiticus was also a frequent contaminant (28% of the strains), mostly isolated from AF+ samples. This finding is in agreement with the presence of AFG in most of those samples.
Collapse
Affiliation(s)
- Sylviane Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Anwar El Mahgubi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Amaranta Carvajal-Campos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Sophie Lorber
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Jean-Denis Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Béatrice Orlando
- ARVALIS Institut du Végétal, Station Expérimentale, 91720 Boigneville, France.
| |
Collapse
|
33
|
Caceres I, Snini SP, Puel O, Mathieu F. Streptomyces roseolus, A Promising Biocontrol Agent Against Aspergillus flavus, the Main Aflatoxin B₁ Producer. Toxins (Basel) 2018; 10:toxins10110442. [PMID: 30380704 PMCID: PMC6267218 DOI: 10.3390/toxins10110442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022] Open
Abstract
Crop contamination by aflatoxin B1 is a current problem in tropical and subtropical regions. In the future, this contamination risk may be expanded to European countries due to climate change. The development of alternative strategies to prevent mycotoxin contamination that further contribute to the substitution of phytopharmaceutical products are thus needed. For this, a promising method resides in the use of biocontrol agents. Several actinobacteria strains have demonstrated to effectively reduce the aflatoxin B1 concentration. Nevertheless, the molecular mechanism of action by which these biological agents reduce the mycotoxin concentration has not been determined. The aim of the present study was to test the potential use of Streptomyces roseolus as a biocontrol agent against aflatoxin B1 contamination. Co-cultures with Aspergillus flavus were conducted, and the molecular fungal response was investigated through analyzing the q-PCR expression of 65 genes encoding relevant fungal functions. Moreover, kojic and cyclopiazonic acid concentrations, as well as morphological fungal changes were also analyzed. The results demonstrated that reduced concentrations of aflatoxin B1 and kojic acid were respectively correlated with the down-regulation of the aflatoxin B1 gene cluster and kojR gene expression. Moreover, a fungal hypersporulated phenotype and a general over-expression of genes involved in fungal development were observed in the co-culture condition.
Collapse
Affiliation(s)
- Isaura Caceres
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| | - Selma P Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, 31300 Toulouse, France.
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| |
Collapse
|
34
|
Mousavi Khaneghah A, Eş I, Raeisi S, Fakhri Y. Aflatoxins in cereals: State of the art. J Food Saf 2018. [DOI: 10.1111/jfs.12532] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Amin Mousavi Khaneghah
- Faculty of Food Engineering, Department of Food ScienceUniversity of Campinas (UNICAMP) Monteiro Lobato São Paulo Brazil
| | - Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical EngineeringUniversity of Campinas (UNICAMP), Campinas São Paulo Brazil
| | - Susan Raeisi
- Department of Food Science and Technology, College of AgricultureUrmia University Urmia Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research CommitteeSchool of Public Health, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
35
|
Lv C, Wang P, Ma L, Zheng M, Liu Y, Xing F. Large-Scale Comparative Analysis of Eugenol-Induced/Repressed Genes Expression in Aspergillus flavus Using RNA-seq. Front Microbiol 2018; 9:1116. [PMID: 29899734 PMCID: PMC5988903 DOI: 10.3389/fmicb.2018.01116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
Aflatoxin B1 (AFB1), which is mainly produced by Aspergillus flavus and Aspergillus parasiticus, is the most toxic and hepatocarcinogenic polyketide known. Chemical fungicides are currently utilized to reduce this fungal contaminant, but they are potentially harmful to human health and the environment. Therefore, natural anti-aflatoxigenic products are used as sustainable alternatives to control food and feed contamination. For example, eugenol, presents in many essential oils, has been identified as an aflatoxin inhibitor. However, its exact mechanism of inhibition is yet to be clarified. In this study, the anti-aflatoxigenic mechanism of eugenol in A. flavus was determined using a comparative transcriptomic approach. Twenty of twenty-nine genes in the aflatoxin biosynthetic pathway were down-regulated by eugenol. The most strongly down-regulated gene was aflMa, followed by aflI, aflJ, aflCa, aflH, aflNa, aflE, aflG, aflM, aflD, and aflP. However, the expression of the regulator gene aflR did not change significantly and the expression of aflS was slightly up-regulated. The down-regulation of the global regulator gene veA resulted in the up-regulation of srrA, and the down-regulation of ap-1 and mtfA. The early developmental regulator brlA was profoundly up-regulated in A. flavus after eugenol treatment. These results suggested a model in which eugenol improves fungal development by up-regulating the expression of brlA by the suppression of veA expression and inhibits aflatoxin production through the suppression of veA expression. Exposure to eugenol also caused dysregulated transcript levels of the G protein-coupled receptors (GPCRs) and oxylipins genes. A Gene Ontology analysis indicated that the genes that were highly responsive to eugenol were mainly enriched in RNA-binding functions, suggesting that post-transcriptional modification plays a pivotal role in aflatoxin biosynthesis. KEGG analysis showed that ribosome biogenesis was the most dysregulated pathway, suggesting that eugenol dysregulates ribosome biogenesis, which then interrupts the biosynthesis of Nor-1, Ver-1, and OmtA, and prevents aflatoxisomes performing their normal function in aflatoxin production. In conclusion, our results indicated that eugenol inhibited AFB1 production by modulating the expression of structural genes in aflatoxin pathway, fungal antioxidant status, post-transcriptional modifications and biosynthesis of backbone enzymes in A. flavus.
Collapse
Affiliation(s)
- Cong Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Ping Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Longxue Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Mumin Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| |
Collapse
|
36
|
Hu Q, Zhou M, Wei S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. J Food Sci 2018; 83:1476-1483. [PMID: 29802735 DOI: 10.1111/1750-3841.14180] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 01/23/2023]
Abstract
As potential and valuable antiseptics in the food industry, clove oil and its main effective composition eugenol show beneficial advantages on antibacterial and antifungal activity, aromaticity, and safety. Researches find that both clove oil and eugenol express significantly inhibitory effects on numerous kinds of food source microorganisms, and the mechanisms are associated with reducing the migratory and adhesion and inhibiting the synthesis of biofilm and various virulence factors of these microorganisms. Clove oil and eugenol are generally regarded as safe in vivo experiments. However, they may express certain cytotoxicity on fibroblasts and other cells in vitro. Studies on the quality and additive standard of clove oil and eugenol should be strengthened to promote the antiseptic effects of them in the food antiseptic field.
Collapse
Affiliation(s)
- Qiao Hu
- College of Animal Science and Chongqing Engineering Research Center of Veterinary Science, Southwest Univ., Chongqing Rongchang, 402460, China
| | - Meifang Zhou
- College of Animal Science and Chongqing Engineering Research Center of Veterinary Science, Southwest Univ., Chongqing Rongchang, 402460, China
| | - Shuyong Wei
- College of Animal Science and Chongqing Engineering Research Center of Veterinary Science, Southwest Univ., Chongqing Rongchang, 402460, China
| |
Collapse
|
37
|
El Khoury R, Choque E, El Khoury A, Snini SP, Cairns R, Andriantsiferana C, Mathieu F. OTA Prevention and Detoxification by Actinobacterial Strains and Activated Carbon Fibers: Preliminary Results. Toxins (Basel) 2018; 10:toxins10040137. [PMID: 29587362 PMCID: PMC5923303 DOI: 10.3390/toxins10040137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/26/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by several species of Aspergillus and Penicillium that contaminate food and feed raw materials. To reduce OTA contamination, we first tested in vitro, actinobacterial strains as potential biocontrol agents and afterward, through a physical decontamination method using activated carbon fibers (ACFs). Actinobacterial strains were screened for their ability to reduce OTA in solid co-culture with A. carbonarius, which is the major OTA-producing species in European vineyards. Four strains showed a high affinity for removing OTA (67%–83%) with no significant effect on fungal growth (<20%). The mechanism of action was first studied by analyzing the expression of OTA cluster genes (acOTApks, acOTAnrps, acOTAhal) by RT-qPCR showing a drastic reduction in all genes (7–15 times). Second, the ability of these strains to degrade OTA was assessed in vitro on ISP2 solid medium supplemented with OTA (100 µg/L). Two strains reduced OTA to undetectable levels. As for the physical method, high adsorption rates were obtained for ACFs at 0.8 g/L with a 50% adsorption of OTA in red wine by AC15 and 52% in grape juice by AC20 within 24 h. These promising methods could be complementarily applied toward reducing OTA contamination in food chains, which promotes food safety and quality.
Collapse
Affiliation(s)
- Rhoda El Khoury
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Elodie Choque
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
- Unité de Recherche Biologie des Plantes et Innovation (BIOPI-EA 3900), Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens CEDEX, France.
| | - Anthony El Khoury
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Selma P Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Robbie Cairns
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Caroline Andriantsiferana
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| |
Collapse
|
38
|
El Hajj Assaf C, Snini SP, Tadrist S, Bailly S, Naylies C, Oswald IP, Lorber S, Puel O. Impact of veA on the development, aggressiveness, dissemination and secondary metabolism of Penicillium expansum. MOLECULAR PLANT PATHOLOGY 2018; 19:1971-1983. [PMID: 29517851 PMCID: PMC6638001 DOI: 10.1111/mpp.12673] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 05/18/2023]
Abstract
Penicillium expansum, the causal agent of blue mould disease, produces the mycotoxins patulin and citrinin amongst other secondary metabolites. Secondary metabolism is associated with fungal development, which responds to numerous biotic and abiotic external triggers. The global transcription factor VeA plays a key role in the coordination of secondary metabolism and differentiation processes in many fungal species. The specific role of VeA in P. expansum remains unknown. A null mutant PeΔveA strain and a complemented PeΔveA:veA strain were generated in P. expansum and their pathogenicity on apples was studied. Like the wild-type and the complemented strains, the null mutant PeΔveA strain was still able to sporulate and to colonize apples, but at a lower rate. However, it could not form coremia either in vitro or in vivo, thus limiting its dissemination from natural substrates. The impact of veA on the expression of genes encoding proteins involved in the production of patulin, citrinin and other secondary metabolites was evaluated. The disruption of veA drastically reduced the production of patulin and citrinin on synthetic media, associated with a marked down-regulation of all genes involved in the biosynthesis of the two mycotoxins. Moreover, the null mutant PeΔveA strain was unable to produce patulin on apples. The analysis of gene expression revealed a global impact on secondary metabolism, as 15 of 35 backbone genes showed differential regulation on two different media. These findings support the hypothesis that VeA contributes to the pathogenicity of P. expansum and modulates its secondary metabolism.
Collapse
Affiliation(s)
- Christelle El Hajj Assaf
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
- Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Technology and Food Science UnitMelle 9090Belgium
| | - Selma P. Snini
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
- Present address:
Université de Toulouse, Laboratoire de Génie Chimique, CNRS, INPT, UPSToulouseFrance
| | - Souria Tadrist
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| | - Sylviane Bailly
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| |
Collapse
|
39
|
Essential Oils and Antifungal Activity. Pharmaceuticals (Basel) 2017; 10:ph10040086. [PMID: 29099084 PMCID: PMC5748643 DOI: 10.3390/ph10040086] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022] Open
Abstract
Since ancient times, folk medicine and agro-food science have benefitted from the use of plant derivatives, such as essential oils, to combat different diseases, as well as to preserve food. In Nature, essential oils play a fundamental role in protecting the plant from biotic and abiotic attacks to which it may be subjected. Many researchers have analyzed in detail the modes of action of essential oils and most of their components. The purpose of this brief review is to describe the properties of essential oils, principally as antifungal agents, and their role in blocking cell communication mechanisms, fungal biofilm formation, and mycotoxin production.
Collapse
|
40
|
Caceres I, El Khoury R, Bailly S, Oswald IP, Puel O, Bailly JD. Piperine inhibits aflatoxin B1 production in Aspergillus flavus by modulating fungal oxidative stress response. Fungal Genet Biol 2017; 107:77-85. [DOI: 10.1016/j.fgb.2017.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/24/2017] [Accepted: 08/18/2017] [Indexed: 11/30/2022]
|
41
|
Structural modification of cuminaldehyde thiosemicarbazone increases inhibition specificity toward aflatoxin biosynthesis and sclerotia development in Aspergillus flavus. Appl Microbiol Biotechnol 2017; 101:6683-6696. [PMID: 28725928 DOI: 10.1007/s00253-017-8426-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 01/18/2023]
Abstract
Aspergillus flavus is an opportunistic mold that represents a serious threat for human and animal health due to its ability to synthesize and release, on food and feed commodities, different toxic secondary metabolites. Among them, aflatoxin B1 is one of the most dangerous since it is provided with a strong cancerogenic and mutagenic activity. Controlling fungal contamination on the different crops that may host A. flavus is considered a priority by sanitary authorities of an increasing number of countries due also to the fact that, owing to global temperature increase, the geographic areas that are expected to be prone to experience sudden A. flavus outbreaks are widening. Among the different pre- and post-harvest strategies that may be put forward in order to prevent fungal and/or mycotoxin contamination, fungicides are still considered a prominent weapon. We have here analyzed different structural modifications of a natural-derived compound (cuminaldehyde thiosemicarbazone) for their fungistatic and anti-aflatoxigenic activity. In particular, we have focused our attention on one of the compound that presented a prominent anti-aflatoxin specificity, and performed a set of physiological and molecular analyses, taking also advantage of yeast (Saccharomyces cerevisiae) cell as an experimental model.
Collapse
|
42
|
El Khoury R, Caceres I, Puel O, Bailly S, Atoui A, Oswald IP, El Khoury A, Bailly JD. Identification of the Anti-Aflatoxinogenic Activity of Micromeria graeca and Elucidation of Its Molecular Mechanism in Aspergillus flavus. Toxins (Basel) 2017; 9:toxins9030087. [PMID: 28257049 PMCID: PMC5371842 DOI: 10.3390/toxins9030087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 01/25/2023] Open
Abstract
Of all the food-contaminating mycotoxins, aflatoxins, and most notably aflatoxin B1 (AFB1), are found to be the most toxic and economically costly. Green farming is striving to replace fungicides and develop natural preventive strategies to minimize crop contamination by these toxic fungal metabolites. In this study, we demonstrated that an aqueous extract of the medicinal plant Micromeria graeca—known as hyssop—completely inhibits aflatoxin production by Aspergillus flavus without reducing fungal growth. The molecular inhibitory mechanism was explored by analyzing the expression of 61 genes, including 27 aflatoxin biosynthesis cluster genes and 34 secondary metabolism regulatory genes. This analysis revealed a three-fold down-regulation of aflR and aflS encoding the two internal cluster co-activators, resulting in a drastic repression of all aflatoxin biosynthesis genes. Hyssop also targeted fifteen regulatory genes, including veA and mtfA, two major global-regulating transcription factors. The effect of this extract is also linked to a transcriptomic variation of several genes required for the response to oxidative stress such as msnA, srrA, catA, cat2, sod1, mnsod, and stuA. In conclusion, hyssop inhibits AFB1 synthesis at the transcriptomic level. This aqueous extract is a promising natural-based solution to control AFB1 contamination.
Collapse
Affiliation(s)
- Rhoda El Khoury
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
- Laboratoire de Mycologie et Sécurité des Aliments (LMSA), Département des sciences de la vie et de la terres - Biochimie, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael Beirut 1104 2020 Lebanon.
| | - Isaura Caceres
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Olivier Puel
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Sylviane Bailly
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Ali Atoui
- Laboratory of Microbiology, Department of Natural Sciences and Earth, Faculty of Sciences I, Lebanese University, Hadath Campus, P.O. Box 5, Beirut, Lebanon.
| | - Isabelle P Oswald
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - André El Khoury
- Laboratoire de Mycologie et Sécurité des Aliments (LMSA), Département des sciences de la vie et de la terres - Biochimie, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael Beirut 1104 2020 Lebanon.
| | - Jean-Denis Bailly
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| |
Collapse
|
43
|
El Khoury R, Atoui A, Verheecke C, Maroun R, El Khoury A, Mathieu F. Essential Oils Modulate Gene Expression and Ochratoxin A Production in Aspergillus carbonarius. Toxins (Basel) 2016; 8:E242. [PMID: 27548221 PMCID: PMC4999858 DOI: 10.3390/toxins8080242] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/09/2016] [Indexed: 12/24/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin, mainly produced on grapes by Aspergillus carbonarius, that causes massive health problems for humans. This study aims to reduce the occurrence of OTA by using the ten following essential oils (E.Os): fennel, cardamom, anise, chamomile, celery, cinnamon, thyme, taramira, oregano and rosemary at 1 µL/mL and 5 µL/mL for each E.O.As a matter of fact, their effects on the OTA production and the growth of A. carbonarius S402 cultures were evaluated, after four days at 28 °C on a Synthetic Grape Medium (SGM). Results showed that A. carbonarius growth was reduced up to 100%, when cultured with the E.Os of cinnamon, taramira, and oregano at both concentrations and the thyme at 5 µL/mL. As for the other six E.Os, their effect on A. carbonarius growth was insignificant, but highly important on the OTA production. Interestingly, the fennel E.O at 5 µL/mL reduced the OTA production up to 88.9% compared to the control, with only 13.8% of fungal growth reduction. We further investigated the effect of these E.Os on the expression levels of the genes responsible for the OTA biosynthesis (acOTApks and acOTAnrps along with the acpks gene) as well as the two regulatory genes laeA and vea, using the quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) method. The results revealed that these six E.Os reduced the expression of the five studied genes, where the ackps was downregulated by 99.2% (the highest downregulation in this study) with 5 µL/mL of fennel E.O.As for the acOTApks, acOTAnrps, veA and laeA, their reduction levels ranged between 10% and 96% depending on the nature of the E.O and its concentration in the medium.
Collapse
Affiliation(s)
- Rachelle El Khoury
- Laboratoire de Mycologie et Sécurité Alimentaire (LMSA), Centre d'analyse et de Recherche (CAR), Campus des Sciences et Technologie, Université Saint-Joseph, Mkalles-Beyrouth 1107-2050, Lebanon.
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse 31326, France.
| | - Ali Atoui
- Laboratory of Microbiology, Department of Natural Sciences and Earth, Faculty of Sciences I, Lebanese University, Hadath Campus, Beirut P.O Box 11-8281, Lebanon.
| | - Carol Verheecke
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse 31326, France
| | - Richard Maroun
- Laboratoire de Mycologie et Sécurité Alimentaire (LMSA), Centre d'analyse et de Recherche (CAR), Campus des Sciences et Technologie, Université Saint-Joseph, Mkalles-Beyrouth 1107-2050, Lebanon.
| | - Andre El Khoury
- Laboratoire de Mycologie et Sécurité Alimentaire (LMSA), Centre d'analyse et de Recherche (CAR), Campus des Sciences et Technologie, Université Saint-Joseph, Mkalles-Beyrouth 1107-2050, Lebanon.
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse 31326, France
| |
Collapse
|