1
|
Yang F, Jiang H, Ma K, Hegazy A, Wang X, Liang S, Chang G, Yu L, Tian B, Shi X. Genomic and phenotypic analyses reveal Paenibacillus polymyxa PJH16 is a potential biocontrol agent against cucumber fusarium wilt. Front Microbiol 2024; 15:1359263. [PMID: 38591040 PMCID: PMC11000672 DOI: 10.3389/fmicb.2024.1359263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
In recent years, bacterial-based biocontrol agents (BCA) have become a new trend for the control of fungal diseases such as fusarium wilt that seriously threaten the yield and quality of cucumber, which are transmitted through infested soil and water. This study was set out with the aim of figuring the mechanism of the isolated rhizobacterial strain Paenibacillus polymyxa PJH16 in preventing Fusarium oxysporum f. sp. cucumerinum (Foc). Biocontrol and growth-promoting experiments revealed that bacterial strain causes effective inhibition of the fungal disease through a significant growth-promoting ability of plants, and had activities of β-1,3-glucanase, cellulase, amylase and protease. It could produce siderophore and indole-3-acetic acid, too. Using the high-throughput sequencing tool PacBio Sequel II system and the database annotation, the bacterial strain was identified as P. polymyxa PJH16 and contained genes encoding for presence of biofilm formation, antimicrobial peptides, siderophores and hydrolyases. From comparing data between the whole genome of P. polymyxa PJH16 with four closely related P. polymyxa strains, findings revealed markedly the subtle differences in their genome sequences and proposed new antifungal substances present in P. polymyxa PJH16. Therefore, P. polymyxa PJH16 could be utilized in bioengineering a microbial formulation for application as biocontrol agent and bio-stimulant, in the future.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Huayan Jiang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Abeer Hegazy
- National Water Research Center, Shubra El Kheima, Egypt
| | - Xin Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shen Liang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Gaozheng Chang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Liqin Yu
- Henan Natural Products Biotechnology Co., Ltd., Zhengzhou, China
| | - Baoming Tian
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanjie Shi
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Agyeman-Duah E, Okonkwo CC, Ujor VC. Microbial removal of nutrients from anaerobic digestate: assessing product-coupled and non-product-coupled approaches. Front Microbiol 2023; 14:1299402. [PMID: 38146449 PMCID: PMC10749329 DOI: 10.3389/fmicb.2023.1299402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Although anaerobic digestate contains >90% water, the high nutrient content of digestate makes it economically and technically intractable to treatment by existing wastewater treatment technologies. This study separately assessed the feasibility of nutrient removal from digestate by Rhizopus delemar DSM 905 and a culture of phosphate-accumulating organisms (PAOs). With Rhizopus delemar DSM 905, we investigated concomitant nutrient removal from digestate-supplemented medium and fumaric acid production, as a potentially economical strategy for digestate treatment. Following the cultivation of R. delemar DSM 905 in a fermentation medium containing 25% (v/v) digestate, the concentrations of Al, Cr, Cu, Fe, K, Mg, Mn, Pb, and Zn reduced 40, 12, 74, 96, 12, 26, 23%, ~18, and 28%, respectively. Similarly, the concentrations of total phosphorus, total nitrogen, phosphate (PO4-P), ammonium (NH4-N), nitrate (NO3-N), and sulfur decreased 93, 88, 97, 98, 69, and 13%, respectively. Concomitantly, cultures supplemented with 25 and 15% (v/v) digestate produced comparable titers of fumarate (~11 and ~ 17 g/L, respectively) to the digestate un-supplemented control cultures. With PAOs, we assessed the removal of total phosphorus, total nitrogen, PO4-P, and NH4-N, of which the concentrations reduced 86, 90%, ~99, and 100%, respectively in 60% (v/v) digestate. This study provides additional bases for microbial removal of excess nutrients from anaerobic digestate, with the potential to engender future water recovery from this waste stream that is currently largely recalcitrant to treatment.
Collapse
Affiliation(s)
- Eric Agyeman-Duah
- Fermentation Science and Metabolic Engineering Group, Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Christopher C. Okonkwo
- Biotechnology Program, Department of Chemistry and Chemical Biology, The Roux Institute, Northeastern University, Portland, ME, United States
| | - Victor C. Ujor
- Fermentation Science and Metabolic Engineering Group, Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Yang F, Jiang H, Ma K, Wang X, Liang S, Cai Y, Jing Y, Tian B, Shi X. Genome sequencing and analysis of Bacillus velezensis VJH504 reveal biocontrol mechanism against cucumber Fusarium wilt. Front Microbiol 2023; 14:1279695. [PMID: 37901818 PMCID: PMC10602789 DOI: 10.3389/fmicb.2023.1279695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
One major issue in reducing cucumber yield is the destructive disease Cucumber (Cucumis sativus L.) wilt disease caused by Fusarium oxysporum f. sp. cucumerinum (Foc). When using the isolate VJH504 isolated from cucumber rhizosphere soil and identified as Bacillus velezensis, the growth of Foc in the double culture experiment was effectively inhibited. Phenotypic, phylogenetic, and genomic analyses were conducted to enhance understanding of its biocontrol mechanism. According to the result of the phenotype analysis, B. velezensis VJH504 could inhibit cucumber fusarium wilt disease both in vitro and in vivo, and significantly promote cucumber seed germination and seedling growth. Additionally, the tests of growth-promoting and biocontrol characteristics revealed the secretion of proteases, amylases, β-1,3-glucanases, cellulases, as well as siderophores and indole-3-acetic acid by B. velezensis VJH504. Using the PacBio Sequel II system, we applied the complete genome sequencing for B. velezensis VJH504 and obtained a single circular chromosome with a size of 3.79 Mb. A phylogenetic tree was constructed based on the 16S rRNA gene sequences of B. velezensis VJH504 and 13 other Bacillus species, and Average Nucleotide Identity (ANI) analysis was performed using their whole-genome sequences, confirming isolateVJH504 as B. velezensis. Following this, based on the complete genome sequence od B. velezensis VJH504, specific functional analysis, Carbohydrate-Active Enzymes (CAZymes) analysis, and secondary metabolite analysis were carried out, predicting organism's abilities for biofilm formation, production of antifungal CAZymes, and synthesis of antagonistic secondary metabolites against pathogens. Afterwards, a comparative genomic analysis was performed between B. velezensis VJH504 and three other B. velezensis strains, revealing subtle differences in their genomic sequences and suggesting the potential for the discovery of novel antimicrobial substances in B. velezensis VJH504. In conclusion, the mechanism of B. velezensis VJH504 in controlling cucumber fusarium wilt was predicted to appear that B. velezensis VJH504is a promising biocontrol agent, showcasing excellent application potential in agricultural production.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Huayan Jiang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shen Liang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuxin Cai
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Yancai Jing
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Baoming Tian
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanjie Shi
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Schiefloe M, Jakobsen ØM, Pannico A, Quadri C, Jost AIK. From urine to food and oxygen: effects of high and low NH 4+:NO 3- ratio on lettuce cultivated in a gas-tight hydroponic facility. FRONTIERS IN PLANT SCIENCE 2023; 14:1229476. [PMID: 37588416 PMCID: PMC10425772 DOI: 10.3389/fpls.2023.1229476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
In situ production of food, water and oxygen is essential for long-duration human space missions. Higher plants represent a key element in Bioregenerative Life Support Systems (BLSS), where crop cultivation can be based on water and nutrients recovered from waste and wastewater. Human urine exemplifies an important waste stream with potential to provide crops with nitrogen (N) and other nutrients. Dynamic waste composition and treatment processes may result in mineralized fractions with varying ammonium (NH4 +) to nitrate (NO3 -) ratios. In this study, lettuce was cultivated in the unique ESA MELiSSA Plant Characterization Unit, an advanced, gas-tight hydroponic research facility offering controlled environment and continuous monitoring of atmospheric gas composition. To evaluate biological and system effects of nutrient solution NH4 +:NO3 - ratio, two crop tests were run with different NH4 + to total N ratio (NH4 +:N) and elevated concentrations of Na+ and Cl- in line with a urine recycling scenario. Plants cultivated at 0.5 mol·mol-1 NH4 +:N (HiNH4 +) achieved 50% lower shoot biomass compared to those cultivated at 0.1 mol·mol-1 NH4 +:N (LoNH4 +), accompanied by higher shoot dry weight content and lower harvest index. Analyses of projected leaf area over time indicated that the reduced biomass observed at harvest could be attributed to a lower specific growth rate during the close-to-exponential growth phase. The HiNH4 + crop produced 40% less O2 over the full cultivation period. However, normalization of the results indicated a marginal increase in O2 production per time and per projected leaf area for the HiNH4 + crop during the exponential growth phase, in line with a higher shoot chlorophyll content. Mineral analysis demonstrated that the biomass content of NH4 + and NO3 - varied in line with the nutrient solution composition. The ratio of consumed NH4 + to consumed N was higher than the NH4 +:N ratio of the nutrient solution for both crop tests, resulting in decreasing NH4 +:N ratios in the nutrient solution over time. The results provide enhanced insight for design of waste processes and crop cultivation to optimize overall BLSS efficiency and hold valuable potential for improved resource utilization also in terrestrial food production systems.
Collapse
Affiliation(s)
- Mona Schiefloe
- Centre for Interdisciplinary Research in Space (CIRiS), NTNU Social Research, Trondheim, Norway
| | - Øyvind Mejdell Jakobsen
- Centre for Interdisciplinary Research in Space (CIRiS), NTNU Social Research, Trondheim, Norway
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Ann-Iren Kittang Jost
- Centre for Interdisciplinary Research in Space (CIRiS), NTNU Social Research, Trondheim, Norway
| |
Collapse
|
5
|
He C, Jia Z, Fan P, Ruan Y, Liang Y, Ma J, Li J. 15N tracing reveals preference for different nitrogen forms of Fusarium oxysporum f. sp. cubense tropical race 4. Front Microbiol 2023; 14:1102720. [PMID: 36819036 PMCID: PMC9936223 DOI: 10.3389/fmicb.2023.1102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Plant uptake of nitrogen is often associated with increased incidence of banana Fusarium wilt, a disease caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). However, the nitrogen metabolic preferences of Foc TR4 pathogens remain unknown. In this study, we investigated the ecophysiological patterns of Foc TR4 grown on different combinations of organic and inorganic nitrogen. Potato Dextrose Agar (PDA) and Rose Bengal Medium (RBM) were used as an organic nitrogen source, which was sequentially replaced with inorganic N (0, 50% or 90%) in the form 15NH4NO3 or NH4 15NO3 to reveal preferential assimilation of ammonium or nitrate. The results showed that mycelium biomass and nitrogen content decreased significantly, while the carbon content and C:N ratio increased in Foc TR4 grown on media containing inorganic nitrogen sources. Mycelium biomass was negatively correlated with C:N ratio. Mycelium 15N abundance increased significantly between the PDA50 + A50/RBM50 + A50 treatments (50% organic nitrogen+50%15NH4NO3) and the PDA10 + A90/RBM10 + A90 treatments (10% organic nitrogen+90%15NH4NO3). These results indicate that the higher C:N ratio reduced mycelium growth by reducing its biomass and diameter and showed that Foc TR4 preferred to use ammonium nitrogen to promote the growth. These findings suggest that treating banana crops with a combination of organic and inorganic (i.e., nitrate) nitrogen could be a better way to defend against Fusarium wilt of banana.
Collapse
Affiliation(s)
- Chen He
- College of Tropical Crops, Hainan University, Haikou, China,State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhongjun Jia
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China,Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China,*Correspondence: Zhongjun Jia, ✉ ; ✉
| | - Pingshan Fan
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yunze Ruan
- College of Tropical Crops, Hainan University, Haikou, China
| | - Ye Liang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Jingjing Ma
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jinku Li
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
6
|
Aluko OO, Li C, Yuan G, Nong T, Xiang H, Wang Q, Li X, Liu H. Differential Effects of Ammonium (NH 4+) and Potassium (K +) Nutrition on Photoassimilate Partitioning and Growth of Tobacco Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:3295. [PMID: 36501338 PMCID: PMC9736971 DOI: 10.3390/plants11233295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Plants utilize carbohydrates as the main energy source, but much focus has been on the impact of N and K on plant growth. Less is known about the combined impact of NH4+ and K+ nutrition on photoassimilate distribution among plant organs, and the resultant effect of such distribution on growth of tobacco seedlings, hence this study. Here, we investigated the synergetic effect of NH4+ and K+ nutrition on photoassimilate distribution, and their resultant effect on growth of tobacco seedlings. Soluble sugar and starch content peaks under moderate NH4+ and moderate K+ (2-2 mM), leading to improved plant growth, as evidenced by the increase in tobacco weight and root activity. Whereas, a drastic reduction in the above indicators was observed in plants under high NH4+ and low K+ (20-0.2 mM), due to low carbohydrate synthesis and poor photoassimilate distribution. A strong positive linear relationship also exists between carbohydrate (soluble sugar and starch) and the activities of these enzymes but not for invertase. Our findings demonstrated that NH4+ and K+-induced ion imbalance influences plant growth and is critical for photoassimilate distribution among organs of tobacco seedlings.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chuanzong Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming 650106, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xuemei Li
- Yunnan Academy of Tobacco Science, Kunming 650106, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Sun S, Yang Z, Song Z, Wang N, Guo N, Niu J, Liu A, Bai B, Ahammed GJ, Chen S. Silicon enhances plant resistance to Fusarium wilt by promoting antioxidant potential and photosynthetic capacity in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1011859. [PMID: 36311065 PMCID: PMC9608603 DOI: 10.3389/fpls.2022.1011859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 06/07/2023]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Fo), is a severe soil-borne disease affecting cucumber production worldwide, particularly under monocropping in greenhouses. Silicon (Si) plays an important role in improving the resistance of crops to Fusarium wilt, but the underlying mechanism is largely unclear. Here, an in vitro study showed that 3 mmol·l-1 Si had the best inhibitory effect on the mycelial growth of F. oxysporum in potato dextrose agar (PDA) culture for 7 days. Subsequently, the occurrence of cucumber wilt disease and its mechanisms were investigated upon treatments with exogenous silicon under soil culture. The plant height, stem diameter, root length, and root activity under Si+Fo treatment increased significantly by 39.53%, 94.87%, 74.32%, and 95.11% compared with Fo only. Importantly, the control efficiency of Si+Fo was 69.31% compared with that of Fo treatment. Compared with Fo, the activities of peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) significantly increased by 148.92%, 26.47%, and 58.54%, while the contents of H2O2, O 2 · - , and malondialdehyde (MDA) notably decreased by 21.67%, 59.67%, and 38.701%, respectively, in roots of cucumber plants treated with Si + Fo. Compared with Fo treatment, the net photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum RuBisCO carboxylation rates (Vcmax), maximum RuBP regeneration rates (Jmax), and activities of ribulose-1,5-bisphosphate carboxylase (RuBisCO), fructose-1,6-bisphosphatase (FBPase), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the expression of FBPA, TPI, SBPase, and FBPase in Si+Fo treatment increased significantly. Furthermore, Si alleviated stomatal closure and enhanced endogenous silicon content compared with only Fo inoculation. The study results suggest that exogenous silicon application improves cucumber resistance to Fusarium wilt by stimulating the antioxidant system, photosynthetic capacity, and stomatal movement in cucumber leaves. This study brings new insights into the potential of Si application in boosting cucumber resistance against Fusarium wilt with a bright prospect for Si use in cucumber production under greenhouse conditions.
Collapse
Affiliation(s)
- Shuangsheng Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhengkun Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiyu Song
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Nannan Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ning Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Jinghan Niu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Bing Bai
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, China
- Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang, China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, China
- Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang, China
| |
Collapse
|
8
|
Nitrate–Nitrite–Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants. Int J Mol Sci 2022; 23:ijms231911522. [PMID: 36232819 PMCID: PMC9569746 DOI: 10.3390/ijms231911522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3−), nitrite (NO2−), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3− and NO2−, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.
Collapse
|
9
|
Orr R, Dennis PG, Wong Y, Browne DJ, Cooper M, Birt HWG, Lapis-Gaza HR, Pattison AB, Nelson PN. Nitrogen fertilizer rate but not form affects the severity of Fusarium wilt in banana. FRONTIERS IN PLANT SCIENCE 2022; 13:907819. [PMID: 35941941 PMCID: PMC9356348 DOI: 10.3389/fpls.2022.907819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) fertilizers are routinely applied to bananas (Musa spp.) to increase production but may exacerbate plant diseases like Fusarium wilt of banana (FWB), which is the most economically important disease. Here, we characterized the effects of N rate and form on banana plant growth, root proteome, bacterial and fungal diversity in the rhizosphere, the concentration of Fusarium oxysporum f.sp. cubense (Foc) in the soil, and the FWB severity. Banana plants (Musa subgroup ABB) were grown under greenhouse conditions in soil with ammonium or nitrate supplemented at five N rates, and with or without inoculation with Foc. The growth of non-inoculated plants was positively correlated with the N rate. In bananas inoculated with Foc, disease severity increased with the N rate, resulting in the Foc-inoculated plant growth being greatest at intermediate N rates. The abundance of Foc in the soil was weakly related to the treatment conditions and was a poor predictor of disease severity. Fungal diversity was consistently affected by Foc inoculation, while bacterial diversity was associated with changes in soil pH resulting from N addition, in particular ammonium. N rate altered the expression of host metabolic pathways associated with carbon fixation, energy usage, amino acid metabolism, and importantly stress response signaling, irrespective of inoculation or N form. Furthermore, in diseased plants, Pathogenesis-related protein 1, a key endpoint for biotic stress response and the salicylic acid defense response to biotrophic pathogens, was negatively correlated with the rate of ammonium fertilizer but not nitrate. As expected, inoculation with Foc altered the expression of a wide range of processes in the banana plant including those of defense and growth. In summary, our results indicate that the severity of FWB was negatively associated with host defenses, which was influenced by N application (particularly ammonium), and shifts in microbial communities associated with ammonium-induced acidification.
Collapse
Affiliation(s)
- Ryan Orr
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Daniel J. Browne
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Martha Cooper
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Henry W. G. Birt
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | | | | | - Paul N. Nelson
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
10
|
Xu W, Yang Q, Yang F, Xie X, Goodwin PH, Deng X, Tian B, Yang L. Evaluation and Genome Analysis of Bacillus subtilis YB-04 as a Potential Biocontrol Agent Against Fusarium Wilt and Growth Promotion Agent of Cucumber. Front Microbiol 2022; 13:885430. [PMID: 35756052 PMCID: PMC9218633 DOI: 10.3389/fmicb.2022.885430] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Cucumber wilt caused by Fusarium oxysporum f.sp. cucumerinum (Foc) is a highly destructive disease that leads to reduced yield in cucumbers. In this study, strain YB-04 was isolated from wheat straw and identified as Bacillus subtilis. It displayed strong antagonistic activity against F. oxysporum f.sp. cucumerinum in dual culture and exhibited significant biocontrol of cucumber Fusarium wilt with a higher control effect than those of previously reported Bacillus strains and displayed pronounced growth promotion of cucumber seedlings. B. subtilis YB-04 could secrete extracellular protease, amylase, cellulose, and β-1,3-glucanase and be able to produce siderophores and indole acetic acid. Inoculation with B. subtilis YB-04 or Foc increased cucumber defense-related enzyme activities for PPO, SOD, CAT, PAL, and LOX. However, the greatest increase was with the combination of B. subtilis YB-04 and Foc. Sequencing the genome of B. subtilis YB-04 showed that it had genes for the biosynthesis of various secondary metabolites, carbohydrate-active enzymes, and assimilation of nitrogen, phosphorous, and potassium. B. subtilis YB-04 appears to be a promising biological control agent against the Fusarium wilt of cucumber and promotes cucumber growth by genomic, physiological, and phenotypic analysis.
Collapse
Affiliation(s)
- Wen Xu
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Institute of Plant Protection Research, Graduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qian Yang
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Institute of Plant Protection Research, Graduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Fan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Xie
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Institute of Plant Protection Research, Graduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Xiaoxu Deng
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Institute of Plant Protection Research, Graduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lirong Yang
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Institute of Plant Protection Research, Graduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
11
|
Tiwari R, Chandra K, Shukla SK, Jaiswal VP, Amaresan N, Srivastava AK, Gaur A, Sahni D, Tiwari RK. Interference of bio-control Trichoderma to enhance physical and physiological strength of sugarcane during Pokkah boeng infection. World J Microbiol Biotechnol 2022; 38:139. [PMID: 35705749 DOI: 10.1007/s11274-022-03319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/22/2022] [Indexed: 11/30/2022]
Abstract
Tremendous benefits have been derived from the use of fungicides but excessive use of chemical fungicides not only posing threat to human and animal life but also contaminates the prevailing environment. Damage by pathogenic fungi alone causes significant damage to crops like maize, rice, wheat, soybeans, and potatoes. Therefore, it becomes imperative that these diseases are checked and controlled, for which chemical pesticides are being sprayed on plants extensively. Considering the devastating damage and toxicity, the global focus has taken a drift from synthetic chemicals to nature-friendly biological control agents. The present study focuses on the use of biological control agents particularly Trichoderma in sugarcane during Pokkah boeng infection. In the present experiment, twenty promising Trichoderma strains were evaluated for plant growth promotion, lytic enzymes, and physiological and biocontrol activity. Out of the twenty, four potential Trichoderma strains were assessed in the pot experiment viz. T. harzianum strain T28, T41 and T49 and T. aureoviride strain T38. The T. harzianum (T28) showed efficient plant growth-promoting traits as it produced IAA (20.67 µg/ml), phosphorus solubilization (18.57 µg/ml), and cell wall degrading enzymes such as chitinase (24.98 µg/ml) and β-glucanase (29.98 µg/ml). The interference of biocontrol agent T. harzianum (T28) controlled the disease by 73.55%. Apart from this, the inoculation of Trichoderma (T28) enhanced growth attributes including germination percentage (26.61%), mean tiller number (8.28 tiller/pot), individual cane length (241.5 cm), single cane weight (1.13 kg) and the number of milleable canes (6.00 cane/pot). Improvements in physiological activities at different growth stages of the sugarcane crop were observed based on the photosynthetically active radiation (PAR) on the leaf surface, transpiration rate, stomatal conductance, and photosynthetic rate. Further, improvement in juice quality parameters was also observed as it recorded the highest 0brix, sucrose, and commercial cane sugar by 21.26%, 19.28%, and 13.50%, respectively, by applying T. harzianum strain T28. Thus, results proved that T. harzianum strain T28 may be an effective eco-friendly biocontrol tool for managing Pokkah boeng disease in sugarcane. This is the first report of the biocontrol potential of Trichoderma spp. against Fusarium proliferatum causing Pokkah boeng disease in sugarcane.
Collapse
Affiliation(s)
- Raghvendra Tiwari
- ICAR-Indian Institute of Sugarcane Research, Lucknow, 226008, India.,Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Kajal Chandra
- Birbal Sahni Institute of Palaeosciences, Lucknow, 226007, India
| | - S K Shukla
- ICAR-Indian Institute of Sugarcane Research, Lucknow, 226008, India
| | - V P Jaiswal
- ICAR-Indian Institute of Sugarcane Research, Lucknow, 226008, India
| | - Natarajan Amaresan
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Surat, Gujarat, 394350, India
| | | | - Asha Gaur
- ICAR-Indian Institute of Sugarcane Research, Lucknow, 226008, India
| | - Divya Sahni
- ICAR-Indian Institute of Sugarcane Research, Lucknow, 226008, India
| | - Rajesh Kumar Tiwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India.
| |
Collapse
|
12
|
Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of Arthrinium phaeospermum in Bambusa pervariabilis × Dendrocalamopsis grandis. J Fungi (Basel) 2021; 7:jof7121001. [PMID: 34946984 PMCID: PMC8705590 DOI: 10.3390/jof7121001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Arthrinium phaeospermum can cause branch wilting of Bambusa pervariabilis × Dendrocalamopsis grandis, causing great economic losses and ecological damage. A. phaeospermum was sequenced in sterile deionized water (CK), rice tissue (T1) and B. pervariabilis × D. grandis (T2) fluid by RNA-Seq, and the function of Ctf1β 1 and Ctf1β 2 was verified by gene knockout. There were 424, 471 and 396 differentially expressed genes between the T2 and CK, T2 and T1, and CK and T1 groups, respectively. Thirty DEGs had verified the change in expression by fluorescent quantitative PCR. Twenty-nine DEGs were the same as the expression level in RNA-Seq. In addition, ΔApCtf1β 1 and ΔApCtf1β 2 showed weaker virulence by gene knockout, and the complementary strains Ctf1β 1 and Ctf1β 2 showed the same virulence as the wild-type strains. Relative growth inhibition of ΔApCtf1β 1 and ΔApCtf1β was significantly decreased by 21.4% and 19.2%, respectively, by adding H2O2 compared to the estimates from the wild-type strain and decreased by 25% and 19.4%, respectively, by adding Congo red. The disease index of B. pervariabilis × D. grandis infected by two mutants was significantly lower than that of wild type. This suggested that Ctf1β genes are required for the stress response and virulence of A. phaeospermum.
Collapse
|
13
|
Identification of Susceptibility Genes for Fusarium oxysporum in Cucumber via Comparative Proteomic Analysis. Genes (Basel) 2021; 12:genes12111781. [PMID: 34828387 PMCID: PMC8623666 DOI: 10.3390/genes12111781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Fusarium wilt (FW) in cucumber (Cucumis sativus L.), caused by Fusarium oxysporum f. sp. cucumerinum (Foc), poses a major threat to cucumber growth and productivity. However, lack of available natural resistance resources for FW restricts the breeding of resistant cultivars via conventional approaches. Susceptibility (S) genes in susceptible host plants facilitate infection by the pathogen and contribute to susceptibility. Loss of function of these S genes might provide broad-spectrum and durable disease resistance. Here, we screened S genes via comparative proteomic analysis between cucumber cultivars Rijiecheng and Superina, which exhibited resistance and high -susceptibility to FW, respectively. We identified 210 and 243 differentially regulated proteins (DRPs) in the Rijiecheng and Superina, respectively, and further found that 32 DRPs were predominantly expressed in Superina and significantly up-regulated after Foc inoculation. Expression verification found that TMEM115 (CsaV3_5G025750), encoding a transmembrane protein, TET8 (CsaV3_2G007840), encoding function as a tetraspanin, TPS10 (CsaV3_2G017980) encoding a terpene synthase, and MGT2 (CsaV3_7G006660), encoding a glycosyltransferase, were significantly induced in both cultivars after Foc infection but were induced to a higher expression level in Superina. These candidate genes might act as negative regulators of FW resistance in cucumber and provide effective FW-susceptibility gene resources for improving cucumber FW resistance through breeding programs.
Collapse
|
14
|
Sun Y, Li Y, Li Y, Wang M, Mur LAJ, Shen Q, Guo S. Nitrate mediated resistance against Fusarium infection in cucumber plants acts via photorespiration. PLANT, CELL & ENVIRONMENT 2021; 44:3412-3431. [PMID: 34181268 DOI: 10.1111/pce.14140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Fusarium wilt is one of the major biotic factors limiting cucumber (Cucumis sativus L.) growth and yield. The outcomes of cucumber-Fusarium interactions can be influenced by the form of nitrogen nutrition (nitrate [NO3- ] or ammonium [NH4+ ]); however, the physiological mechanisms of N-regulated cucumber disease resistance are still largely unclear. Here, we investigated the relationship between nitrogen forms and cucumber resistance to Fusarium infection. Our results showed that on Fusarium infection, NO3- feeding decreased the levels of the fungal toxin, fusaric acid, leaf membrane oxidative, organelle damage and disease-associated loss in photosynthesis. Metabolomic analysis and gas-exchange measurements linked NO3- mediated plant defence with enhanced leaf photorespiration rates. Cucumber plants sprayed with the photorespiration inhibitor isoniazid were more susceptible to Fusarium and there was a negative correlation between photorespiration rate and leaf membrane injury. However, there were positive correlations between photorespiration rate, NO3- assimilation and the tricarboxylic acid (TCA) cycle. This provides a potential electron sink or the peroxisomal H2 O2 catalysed by glycolate oxidase. We suggest that the NO3- nutrition enhanced cucumber resistance against Fusarium infection was associated with photorespiration. Our findings provide a novel insight into a mechanism involving the interaction of photorespiration with nitrogen forms to drive wider defence.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yingrui Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yong Li
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Centre for Organic-based Fertilizers, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Wang Y, Jin Y, Han P, Hao J, Pan H, Liu J. Impact of Soil Disinfestation on Fungal and Bacterial Communities in Soil With Cucumber Cultivation. Front Microbiol 2021; 12:685111. [PMID: 34489884 PMCID: PMC8417054 DOI: 10.3389/fmicb.2021.685111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Soil treatment with disinfectants has been used for controlling soilborne phytopathogens. Besides suppressing specific pathogens, how these disinfectants impact soil health, especially soil microbial communities, is yet to be systemically determined. The objectives of this study were to examine the effects of three representative disinfectants, including the dazomet fumigant, fenaminosulf fungicide, and kasugamycin antibiotic on chemical properties, enzymatic activities, and microbial communities in soil for cucumber cultivation. Results showed that 14 days after soil treatment with these chemicals, residual content of dazomet and kasugamycin quickly declined in soil and were undetectable, while fenaminosulf residues were found at 0.48 ± 0.01 mg/kg. Total nitrogen and total carbon increased in soil after dazomet treatment. Urease and sucrase activities were significantly restrained after disinfectant application. The disinfectants did not significantly change the taxon of predominant bacteria and fungi but altered the relative abundance and diversity of soil microbiome, as well as microbial interspecific relationships. Moreover, cucumber cultivation enhanced the overall soil microbial diversity and enzymatic activities, which diminished the difference of soil microbiome among four treatments. The difference in soil microbial diversity among the four treatments became smaller after planting cucumber. Thus, soil microbial communities were affected by soil disinfectants and gradually recovered by cucumber application.
Collapse
Affiliation(s)
- Yan Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Yujie Jin
- College of Plant Science, Jilin University, Changchun, China
| | - Ping Han
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
16
|
Yang D, Wang L, Wang T, Zhang Y, Zhang S, Luo Y. Plant Growth-Promoting Rhizobacteria HN6 Induced the Change and Reorganization of Fusarium Microflora in the Rhizosphere of Banana Seedlings to Construct a Healthy Banana Microflora. Front Microbiol 2021; 12:685408. [PMID: 34354685 PMCID: PMC8329250 DOI: 10.3389/fmicb.2021.685408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Streptomyces aureoverticillatus HN6 was isolated in our previous study and effectively controlled banana Fusarium wilt. We explored the role of HN6 in constructing a healthy rhizosphere microflora of banana seedlings. The method of antibiotic resistance was used to determine the colonization ability of HN6. The effect of HN6 on the rhizosphere microbial communities was assessed using culture-dependent and high-throughput sequencing. The effect of HN6 on the infection process of the pathogen was evaluated using a pot experiment and confocal laser scanning microscopy. The results showed that HN6 could prevent pathogen infection; it increased the nutrient content and diversity of the bacterial community in the rhizosphere, promoted plant growth, and decreased the mycotoxin fusaric acid content and abundance of pathogens in the banana rhizosphere. Thus, HN6 decreased the relative abundance of Fusarium species, increased the diversity of fungi, and increased the relative abundance of bacteria in the rhizosphere. HN6 induced the change and reorganization of the microbial community dominated by Fusarium in the rhizosphere of banana seedlings, and it evolved into a community dominated that was not conducive to the occurrence of diseases, shaping the rhizosphere microflora and promoting the growth of banana.
Collapse
Affiliation(s)
- Deyou Yang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Lanying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Tianhao Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Yunfei Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Shujing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Yanping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
17
|
Martinez DA, Loening UE, Graham MC, Gathorne-Hardy A. When the Medicine Feeds the Problem; Do Nitrogen Fertilisers and Pesticides Enhance the Nutritional Quality of Crops for Their Pests and Pathogens? FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.701310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The challenge of maximising agricultural productivity encourages growers to apply high volumes of nitrogen (N) fertilisers and pesticides in order to promote and protect yields. Despite these inputs, pests and pathogens (P&Ps) continue to cause economic losses and challenge food security at local, national, and global scales. P&Ps are a particular problem in industrial agricultural environments, where large-scale monocultures facilitate rapid growth of crop-adapted P&P populations. P&P population growth is strongly dependent upon acquisition of N-resources (e.g., amino acids) from crop tissues, and concentrations of these compounds depend on the metabolic state of the crop which, in turn, is influenced by its growth stage, by environmental conditions, and by agrochemical inputs. In this study we demonstrate that routine applications of pesticides and/or N-fertilisers may inadvertently reinforce the problem of P&P damage in agriculture by enhancing the nutritional quality of crops for these organisms. N-fertilisation has diverse influences on crops' susceptibility to P&P damage; N-fertilisers enhance the nutritional quality and “attractiveness” of crops for P&Ps, and they can also alter crops' expression of the defensive traits (both morphological and chemical) that serve to protect them against these organisms. Exposure of crops to pesticides (including commonly used insecticide, fungicide, and herbicide products) can result in significant metabolic disruption and, consequently, in accumulation of nutritionally valuable amino acids within crop tissues. Importantly, these metabolic changes may not cause visible signs of stress or toxicity in the crop, and may represent an “invisible” mechanism underlying persistent P&P pressure in the field. Given the intensity of their use worldwide, their far-reaching and destructive consequences for wildlife and overall ecosystem health, and the continued prevalence of P&P-associated crop damage in agriculture, we recommend that the impacts of these cornerstone agricultural inputs on the nutritional relationship between crops and their P&Ps are closely examined in order to inform appropriate management for a more secure and sustainable food system.
Collapse
|
18
|
Aluko OO, Li C, Wang Q, Liu H. Sucrose Utilization for Improved Crop Yields: A Review Article. Int J Mol Sci 2021; 22:4704. [PMID: 33946791 PMCID: PMC8124652 DOI: 10.3390/ijms22094704] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source-sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ's metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| |
Collapse
|
19
|
Zarattini M, Farjad M, Launay A, Cannella D, Soulié MC, Bernacchia G, Fagard M. Every cloud has a silver lining: how abiotic stresses affect gene expression in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1020-1033. [PMID: 33188434 PMCID: PMC7904152 DOI: 10.1093/jxb/eraa531] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/10/2020] [Indexed: 05/03/2023]
Abstract
Current environmental and climate changes are having a pronounced influence on the outcome of plant-pathogen interactions, further highlighting the fact that abiotic stresses strongly affect biotic interactions at various levels. For instance, physiological parameters such as plant architecture and tissue organization together with primary and specialized metabolism are affected by environmental constraints, and these combine to make an individual plant either a more or less suitable host for a given pathogen. In addition, abiotic stresses can affect the timely expression of plant defense and pathogen virulence. Indeed, several studies have shown that variations in temperature, and in water and mineral nutrient availability affect the expression of plant defense genes. The expression of virulence genes, known to be crucial for disease outbreak, is also affected by environmental conditions, potentially modifying existing pathosystems and paving the way for emerging pathogens. In this review, we summarize our current knowledge on the impact of abiotic stress on biotic interactions at the transcriptional level in both the plant and the pathogen side of the interaction. We also perform a metadata analysis of four different combinations of abiotic and biotic stresses, which identifies 197 common modulated genes with strong enrichment in Gene Ontology terms related to defense . We also describe the multistress-specific responses of selected defense-related genes.
Collapse
Affiliation(s)
- Marco Zarattini
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Mahsa Farjad
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alban Launay
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - David Cannella
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Marie-Christine Soulié
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Sorbonne Universités, UPMC Univ. Paris 06, UFR 927, 4 place Jussieu, Paris, France
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, Ferrara, Italy
| | - Mathilde Fagard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
20
|
Hlokwe MT, Kena M, Mamphiswana DN. Application of plant extracts and Trichoderma harzianum for the management of tomato seedling damping-off caused by Rhizoctonia solani. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/7860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Seedling production under smallholder farming systems can be negatively affected by both abiotic and biotic factors. Seedling damping-off caused by Rhizoctonia solani is one of the major biotic factors which causes significant yield reduction. Management is mainly based on the application of synthetic fungicides and cultural practices. However, both methods have limitations which result in their inefficiency. Several studies have reported on the use of plant extracts and biological control to manage plant diseases. The aim of this study was to formulate an effective and practical approach to manage tomato seedling dampingoff using extracts of Monsonia burkeana and Moringa oleifera and a biological control agent Trichoderma harzianum. The efficacy of both extracts was investigated under laboratory conditions to determine the most suppressive concentration to R. solani growth. Methanolic extracts from both plants significantly suppressed pathogen growth at different concentrations. M. burkeana significantly reduced R. solani growth at 8 g/mL (71%) relative to control whilst Moringa oleifera extract reduced pathogen growth by 60% at a concentration of 6 g/mL. The highest suppressive concentrations were further evaluated under greenhouse conditions to test their efficacy on seedling damping-off. In damping-off treatments, both plant extracts and T. harzianum also significantly reduced (p=0.5) pre- and post-emergence dampingoff incidence. M. burkeana recorded the highest suppression at 78%, followed by M. oleifera at 64%. Trichoderma harzianum reduced incidence of damping-off by 60% and this was higher than both plant extract treatments.
Collapse
Affiliation(s)
- Mapula T.P. Hlokwe
- Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Polokwane, South Africa
| | - Mapotso Kena
- Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Polokwane, South Africa
| | - David N. Mamphiswana
- Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Polokwane, South Africa
| |
Collapse
|
21
|
Soulie M, Koka SM, Floch K, Vancostenoble B, Barbe D, Daviere A, Soubigou‐Taconnat L, Brunaud V, Poussereau N, Loisel E, Devallee A, Expert D, Fagard M. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors. MOLECULAR PLANT PATHOLOGY 2020; 21:1436-1450. [PMID: 32939948 PMCID: PMC7549004 DOI: 10.1111/mpp.12984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 05/05/2023]
Abstract
Plant nitrogen (N) fertilization is known to affect disease; however, the underlying mechanisms remain mostly unknown. We investigated the impact of N supply on the Arabidopsis thaliana-Botrytis cinerea interaction. A. thaliana plants grown in low nitrate were more tolerant to all wild-type B. cinerea strains tested. We determined leaf nitrate concentrations and showed that they had a limited impact on B. cinerea growth in vitro. For the first time, we performed a dual RNA-Seq of infected leaves of plants grown with different nitrate concentrations. Transcriptome analysis showed that plant and fungal transcriptomes were marginally affected by plant nitrate supply. Indeed, only a limited set of plant (182) and fungal (22) genes displayed expression profiles altered by nitrate supply. The expression of selected genes was confirmed by quantitative reverse transcription PCR at 6 hr postinfection (hpi) and analysed at a later time point (24 hpi). We selected three of the 22 B. cinerea genes identified for further analysis. B. cinerea mutants affected in these genes were less aggressive than the wild-type strain. We also showed that plants grown in ammonium were more tolerant to B. cinerea. Furthermore, expression of the selected B. cinerea genes in planta was altered when plants were grown with ammonium instead of nitrate, demonstrating an impact of the nature of N supplied to plants on the interaction. Identification of B. cinerea genes expressed differentially in planta according to plant N supply unveils two novel virulence functions required for full virulence in A. thaliana: a secondary metabolite (SM) and an acidic protease (AP).
Collapse
Affiliation(s)
- Marie‐Christine Soulie
- Sorbonne UniversitésUPMC Université Paris 06ParisFrance
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| | | | - Kévin Floch
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| | | | - Deborah Barbe
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| | - Antoine Daviere
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| | - Ludivine Soubigou‐Taconnat
- Institute of Plant Sciences Paris‐SaclayCNRSINRAUniversité Paris‐SudUniversité d'EvryUniversité Paris‐SaclayGif sur YvetteFrance
- Institute of Plant Sciences Paris‐SaclayCNRSINRA Université Paris‐DiderotSorbonne Paris‐CitéGif sur YvetteFrance
| | - Veronique Brunaud
- Institute of Plant Sciences Paris‐SaclayCNRSINRAUniversité Paris‐SudUniversité d'EvryUniversité Paris‐SaclayGif sur YvetteFrance
- Institute of Plant Sciences Paris‐SaclayCNRSINRA Université Paris‐DiderotSorbonne Paris‐CitéGif sur YvetteFrance
| | | | - Elise Loisel
- Univ LyonUniversité Lyon 1CNRSBayer SAS, UMR5240, PathogénieLyonFrance
| | - Amelie Devallee
- Univ LyonUniversité Lyon 1CNRSBayer SAS, UMR5240, PathogénieLyonFrance
| | - Dominique Expert
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| | - Mathilde Fagard
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| |
Collapse
|
22
|
Cháves-Gómez JL, Becerra-Mutis LM, Chávez-Arias CC, Restrepo-Díaz H, Gómez-Caro S. Screening of Different Physalis Genotypes as Potential Rootstocks or Parents Against Vascular Wilt Using Physiological Markers. FRONTIERS IN PLANT SCIENCE 2020; 11:806. [PMID: 32655597 PMCID: PMC7326010 DOI: 10.3389/fpls.2020.00806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 05/16/2023]
Abstract
Cape gooseberry (Physalis peruviana L.) is one of the most exported Andean fruits in Colombia. Vascular wilt caused by Fusarium oxysporum f. sp. physali (FOph) has led to a reduction in crop areas in recent years. Therefore, the aim of this study was to select genotypes with resistance to vascular wilt that can be useful as rootstocks from a group of six Physalis genotypes (Physalis ixocarpa, Physalis floridana, and Physalis peruviana genotypes Colombia, Sudafrica, Peru, and Accession 62) using physiological variables such as maximum quantum efficiency of Photosystem II (Fv/Fm), leaf gas exchange properties [net photosynthesis rate (Pn) and stomatal conductance (g s )], and leaf water potential. An experiment was carried out under greenhouse conditions in which plants of the different Physalis materials were inoculated with the F. oxysporum f. sp. physali strain Map5 at a concentration of 1 × 106 conidia mL-1. Physiological and disease development variables were measured at 15, 23, and 31 days after inoculation (DAI). The results obtained showed that P. peruviana genotypes Colombia and Sudafrica showed greater susceptibility to the disease (disease severity index 3.8 and 3.6, respectively). Net photosynthesis rate (Pn), stomatal conductance (g s ), water potential (Ψ fw ), and Fv/Fm ratio were lower compared to non-inoculated plants. P. floridana and P. ixocarpa plants inoculated with F. oxysporum showed similar behavior to non-inoculated plants for the evaluated variables. In conclusion, the results obtained suggest that these two genotypes can be considered in breeding programs or as rootstock for the establishment of cape gooseberry crops in soils with the presence of the pathogen.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Gómez-Caro
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
23
|
Wang R, Huang J, Liang A, Wang Y, Mur LAJ, Wang M, Guo S. Zinc and Copper Enhance Cucumber Tolerance to Fusaric Acid by Mediating Its Distribution and Toxicity and Modifying the Antioxidant System. Int J Mol Sci 2020; 21:E3370. [PMID: 32397623 PMCID: PMC7247006 DOI: 10.3390/ijms21093370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Fusaric acid (FA), the fungal toxin produced by Fusarium oxysporum, plays a predominant role in the virulence and symptom development of Fusarium wilt disease. As mineral nutrients can be protective agents against Fusarium wilt, hydroponic experiments employing zinc (Zn) and copper (Cu) followed by FA treatment were conducted in a glasshouse. FA exhibited strong phytotoxicity on cucumber plants, which was reversed by the addition of Zn or Cu. Thus, Zn or Cu dramatically reduced the wilt index, alleviated the leaf or root cell membrane injury and mitigated against the FA inhibition of plant growth and photosynthesis. Cucumber plants grown with Zn exhibited decreased FA transportation to shoots and a 17% increase in toxicity mitigation and showed minimal hydrogen peroxide, lipid peroxidation level with the increased of antioxidant enzymes activity in both roots and leaves. Cucumber grown with additional Cu absorbed less FA but showed more toxicity mitigation at 20% compared to with additional Zn and exhibited decreased hydrogen peroxide level and increased antioxidant enzymes activity. Thus, adding Zn or Cu can decrease the toxicity of the FA by affecting the absorption or transportation of the FA in plants and mitigate toxicity possibly through chelation. Zn and Cu modify the antioxidant system to scavenge hydrogen peroxide for suppressing FA induction of oxidative damage. Our experiments could provide a theoretical basis for the direct application of micro-fertilizer as protective agents in farming.
Collapse
Affiliation(s)
- Ruirui Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| | - Jian Huang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| | - Aichen Liang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| | - Ying Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK;
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| |
Collapse
|
24
|
Gu Z, Wang M, Wang Y, Zhu L, Mur LAJ, Hu J, Guo S. Nitrate Stabilizes the Rhizospheric Fungal Community to Suppress Fusarium Wilt Disease in Cucumber. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:590-599. [PMID: 32073377 DOI: 10.1094/mpmi-07-19-0198-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nitrogen forms can regulate soil-borne Fusarium wilt suppression, but the related mechanisms are largely unknown, especially possible action via the rhizospheric microbial community. Soil analysis, MiSeq high-throughput sequencing analysis, community diversity, and network analysis were used to characterize the impact of different nitrogen forms (nitrate and ammonium) on rhizospheric fungal communities and the contribution of nitrate to the suppression to Fusarium oxysporum f. sp. cucumerinum compared with ammonium. Nitrate-grown cucumber showed a lower disease index and F. oxysporum f. sp. cucumerinum abundance in the rhizosphere. In comparisons with ammonium nutrients, nitrate-fed plants maintained a higher soil rhizosphere pH, microbial biomass carbon content, microbial biomass nitrogen content, as well as fungal community richness and diversity following F. oxysporum f. sp. cucumerinum incubation. All these factors were negatively related with disease index. Network analysis showed fewer nodes and edges in the ammonium treatments compared with nitrate treatments. The relative abundance of Pathotroph-Saprotroph, Pathotroph-Saprotroph-Symbiotroph, and Saprotroph fungi explained 82% of the variability of rhizosphere F. oxysporum f. sp. cucumerinum abundance. In conclusion, after pathogen inoculation under nitrate nutrition, the less-affected microbial composition, community diversity, and community internal relations, which resulted from the more diverse and robust microbial population, potentially contributed to greater Fusarium wilt suppression.
Collapse
Affiliation(s)
- Zechen Gu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Linxing Zhu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Jun Hu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 2020; 21:ijms21020572. [PMID: 31963138 PMCID: PMC7014335 DOI: 10.3390/ijms21020572] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrogen (N) is one of the most important elements that has a central impact on plant growth and yield. N is also widely involved in plant stress responses, but its roles in host-pathogen interactions are complex as each affects the other. In this review, we summarize the relationship between N nutrition and plant disease and stress its importance for both host and pathogen. From the perspective of the pathogen, we describe how N can affect the pathogen’s infection strategy, whether necrotrophic or biotrophic. N can influence the deployment of virulence factors such as type III secretion systems in bacterial pathogen or contribute nutrients such as gamma-aminobutyric acid to the invader. Considering the host, the association between N nutrition and plant defence is considered in terms of physical, biochemical and genetic mechanisms. Generally, N has negative effects on physical defences and the production of anti-microbial phytoalexins but positive effects on defence-related enzymes and proteins to affect local defence as well as systemic resistance. N nutrition can also influence defence via amino acid metabolism and hormone production to affect downstream defence-related gene expression via transcriptional regulation and nitric oxide (NO) production, which represents a direct link with N. Although the critical role of N nutrition in plant defences is stressed in this review, further work is urgently needed to provide a comprehensive understanding of how opposing virulence and defence mechanisms are influenced by interacting networks.
Collapse
|
26
|
Soodaeva S, Kubysheva N, Klimanov I, Nikitina L, Batyrshin I. Features of Oxidative and Nitrosative Metabolism in Lung Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1689861. [PMID: 31249640 PMCID: PMC6556356 DOI: 10.1155/2019/1689861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Respiratory diseases are accompanied by intensification of free radical processes at different levels of the biological body organization. Simultaneous stress and suppression of various parts of antioxidant protection lead to the development of oxidative stress (OS) and nitrosative stress (NS). The basic mechanisms of initiation and development of the OS and NS in pulmonary pathology are considered. The antioxidant defense system of the respiratory tract is characterized. The results of the NS and OS marker study in various respiratory diseases are presented. It is shown that NS and OS are multilevel complex-regulated processes, existing and developing in inseparable connection with a number of physiological and pathophysiological processes. The study of NS and OS mechanisms contributes to the improvement of the quality of diagnosis and the development of therapeutic agents that act on different pathogenetic stages of the disease.
Collapse
Affiliation(s)
- Svetlana Soodaeva
- Pulmonology Scientific Research Institute under FMBA of Russia, Orekhovyy Bul'var 28, Moscow 115682, Russia
| | - Nailya Kubysheva
- Kazan Federal University, Kremlyovskaya St., 18, Kazan 420000, Russia
| | - Igor Klimanov
- Pulmonology Scientific Research Institute under FMBA of Russia, Orekhovyy Bul'var 28, Moscow 115682, Russia
| | - Lidiya Nikitina
- Khanty-Mansiysk-Yugrа State Medical Academy, Mira St., 40, KMAD-Yugry, Khanty-Mansiysk 628007, Russia
| | - Ildar Batyrshin
- Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal S/N, Gustavo A. Madero, 07738 Mexico City, Mexico
| |
Collapse
|
27
|
Physiological, Biochemical and Chlorophyll Fluorescence Parameters of Physalis Peruviana L. Seedlings Exposed to Different Short-Term Waterlogging Periods and Fusarium Wilt Infection. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cape gooseberry has coped with abiotic and biotic stresses such as prolonged waterlogging periods and vascular wilt in recent years. The aim of this study was to evaluate the influence of four waterlogging periods on stomatal conductance (gs), leaf water potential (Ψwf), plant growth, leaf photosynthetic pigments, malondialdehyde (MDA) production, proline content and chlorophyll fluorescence parameters in cape gooseberry plants infected with Fusarium oxysporum f. sp. physali (Foph). Two-month-old ecotype “Colombia” plants were arranged in a completely randomized factorial design in eight treatments: plants without waterlogging (control), plants with waterlogging for 4, 6 and 8 d with and without Foph, respectively. The area under the disease progress curve was higher in inoculated plants subjected to 6 and 8 d of waterlogging (55.25 and 64.25) compared to inoculated plants but without waterlogging (45.25). The results also showed a lower plant growth, gs, Ψwf, leaf photosynthetic pigments and chlorophyll fluorescence parameters (Fv/Fm, electron transport rate (ETR), Y (II) and qP) as waterlogging periods in plants with Foph increased. However, this group of plants showed a greater proline and malondialdehyde (MDA) accumulation and a higher NPQ. In conclusion, cape gooseberry shows a low acclimation to waterlogging conditions of more than 6 d in soils with Foph.
Collapse
|
28
|
Guo J, Jia Y, Chen H, Zhang L, Yang J, Zhang J, Hu X, Ye X, Li Y, Zhou Y. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Sci Rep 2019; 9:1248. [PMID: 30718692 PMCID: PMC6362105 DOI: 10.1038/s41598-018-37838-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
Nitrogen (N) and potassium (K) are essential macronutrients for plants growth; however, the mechanism by which K mediates negative effects on ammonium-sensitive plants is still poorly understood. We hypothesized that K supplies may enhance antagonistic ammonium stress while improving nitrate nutrition function, which wheat seedlings were grown in sand culture in the presence of two N forms (ammonium; nitrate) supplied at two rates (2, 10 mmol L-1) and three K levels (0.5, 5, 15 mmol L-1). We found that a high N rate increased plant biomass under nitrate nutrition, while it had a negative effect under ammonium nutrition. Compared with nitrate, biomass was depressed by 54% or 85% for low or high N rate under ammonium. This resulted in a reduction in gas exchange parameters and a subsequent decrease in growth variables and nutrient uptake, whereas these parameters increased significantly with increasing K levels. Moreover, in principal components analysis, these variations were highly clustered under nitrate nutrition and highly separated under ammonium nutrition. Our study shows a clear positive interaction between K and N, suggesting that high K supply relieves ammonium stress while improving growth vigor under nitrate nutrition by enhancing nutrient uptake and assimilate production in wheat plants.
Collapse
Affiliation(s)
- Jiuxin Guo
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yamin Jia
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huanhuan Chen
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lijun Zhang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinchang Yang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Zhang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiangyu Hu
- The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xin Ye
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Zhou
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, College of Resource and Environment, Anhui Science and Technology University, Bengbu, 233100, China.
| |
Collapse
|
29
|
Wang M, Gu Z, Wang R, Guo J, Ling N, Firbank LG, Guo S. Plant Primary Metabolism Regulated by Nitrogen Contributes to Plant-Pathogen Interactions. PLANT & CELL PHYSIOLOGY 2019; 60:329-342. [PMID: 30388252 DOI: 10.1093/pcp/pcy211] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
Nitrogen contributes to plant defense responses by the regulation of plant primary metabolism during plant-pathogen interactions. Based on biochemical, physiological, bioinformatic and transcriptome approaches, we investigated how different nitrogen forms (ammonium vs. nitrate) regulate the physiological response of cucumber (Cucumis sativus) to Fusarium oxysporum f. sp. cucumerinum (FOC) infection. The metabolic profile revealed that nitrate-grown plants accumulated more organic acids, while ammonium-grown plants accumulated more amino acids; FOC infection significantly increased levels of both amino acids and organic acids in the roots of ammonium-grown plants. Transcriptome analysis showed that genes related to carbon metabolism were mostly up-regulated in plants grown with nitrate, whereas in ammonium-grown plants the up-regulated genes were mostly those that were related to primary nitrogen metabolism. Root FOC colonization and disease incidence were positively correlated with levels of root amino acids and negatively correlated with levels of root organic acids. In conclusion, organic acid metabolism and expression of related genes increased under nitrate, whereas ammonium increased the level of amino acids and expression of related genes; these altered levels of organic acids and amino acids resulted in different tolerances to FOC infection depending on the nitrogen forms supplied.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zechen Gu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ruirui Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | | | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|