1
|
Silva-Magalhães R, Gomes Dos Santos AM, Silva-Araújo AL, Peres-Damásio PL, Gonçalves de Alvarenga V, Souza de Oliveira L, Sanchez EF, Chávez-Olórtegui C, Varela LSDRN, Paiva ALB, Guerra-Duarte C. Venom from Loxosceles Spiders Collected in Southeastern and Northeastern Brazilian Regions Cause Hemotoxic Effects on Human Blood Components. Toxins (Basel) 2024; 16:532. [PMID: 39728790 DOI: 10.3390/toxins16120532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
Spiders of the genus Loxosceles represent a public health problem in Brazil due to the severity of the cutaneous and systemic effects that may result from their bite. In the systemic form of loxoscelism, hemolytic anemia, thrombocytopenia, and disseminated intravascular coagulation can occur. Despite the seriousness of Loxosceles accidents, the venom of some species has not yet been properly characterized considering these hemotoxic effects, such as that of Loxosceles amazonica, Loxosceles aff. Variegata, and Loxosceles similis. To better understand their toxic potential, this study aimed to characterize the hematotoxic properties of these Loxosceles venoms. The crude venom was obtained from specimens of L. amazonica, L. aff. Variegata, and L. similis available from Funed's arachnidary. In washed platelets, L. aff. variegata inhibited platelet aggregation induced by collagen and convulxin, whereas L. amazonica and L. similis venoms were able to induce platelet aggregation. In the in vitro hemolysis assays, all venoms experimentally induced direct hemolysis of human erythrocytes in a concentration-dependent manner, with different intensities. Furthermore, evidence suggest that the ABO and Rh systems may influence hemolytic activity. Finally, the studied Loxosceles venoms degraded fibrinogen, suggesting possible alterations in the coagulation cascade. Based in the here-presented preliminary study, in vivo assays in model animals are needed to verify the real toxic potential of these species' venom, building up knowledge to elucidate the action of Loxosceles venoms in blood.
Collapse
Affiliation(s)
- Rafaela Silva-Magalhães
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Ayla Mel Gomes Dos Santos
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Ana Luiza Silva-Araújo
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Pamella Luize Peres-Damásio
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Valéria Gonçalves de Alvarenga
- Animal Venoms Biochemistry Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Luciana Souza de Oliveira
- Animal Venoms Biochemistry Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Eladio Flores Sanchez
- Animal Venoms Biochemistry Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Protein Imunochemistry Lab, Institute of Biological Sciences, Federal University of Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | | | - Ana Luiza Bittencourt Paiva
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Clara Guerra-Duarte
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| |
Collapse
|
2
|
da Justa HC, Hernández González JE, Vuitika L, Mariutti RB, Magnago PAM, de Moraes FR, Senff-Ribeiro A, Gremski LH, Arni RK, Veiga SS. Comparative Biochemical, Structural, and Functional Analysis of Recombinant Phospholipases D from Three Loxosceles Spider Venoms. Int J Mol Sci 2023; 24:12006. [PMID: 37569382 PMCID: PMC10419089 DOI: 10.3390/ijms241512006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Spiders of Loxosceles genus are widely distributed and their venoms contain phospholipases D (PLDs), which degrade phospholipids and trigger inflammatory responses, dermonecrosis, hematological changes, and renal injuries. Biochemical, functional, and structural properties of three recombinant PLDs from L. intermedia, L. laeta, and L. gaucho, the principal species clinically relevant in South America, were analyzed. Sera against L. gaucho and L. laeta PLDs strongly cross-reacted with other PLDs, but sera against L. intermedia PLD mostly reacted with homologous molecules, suggesting underlying structural and functional differences. PLDs presented a similar secondary structure profile but distinct melting temperatures. Different methods demonstrated that all PLDs cleave sphingomyelin and lysophosphatidylcholine, but L. gaucho and L. laeta PLDs excelled. L. gaucho PLD showed greater "in vitro" hemolytic activity. L. gaucho and L. laeta PLDs were more lethal in assays with mice and crickets. Molecular dynamics simulations correlated their biochemical activities with differences in sequences and conformations of specific surface loops, which play roles in protein stability and in modulating interactions with the membrane. Despite the high similarity, PLDs from L. gaucho and L. laeta venoms are more active than L. intermedia PLD, requiring special attention from physicians when these two species prevail in endemic regions.
Collapse
Affiliation(s)
- Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
| | - Jorge Enrique Hernández González
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil; (J.E.H.G.); (R.B.M.); (F.R.d.M.); (R.K.A.)
| | - Larissa Vuitika
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (ICB-IV/USP), São Paulo 05508-000, Brazil
| | - Ricardo Barros Mariutti
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil; (J.E.H.G.); (R.B.M.); (F.R.d.M.); (R.K.A.)
| | - Pedro Augusto Martinho Magnago
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
| | - Fábio Rogério de Moraes
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil; (J.E.H.G.); (R.B.M.); (F.R.d.M.); (R.K.A.)
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
| | - Raghuvir Krishnaswamy Arni
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil; (J.E.H.G.); (R.B.M.); (F.R.d.M.); (R.K.A.)
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
| |
Collapse
|
3
|
Hernandez KR, Karim ZA, Qasim H, Druey KM, Alshbool FZ, Khasawneh FT. Regulator of G-Protein Signaling 16 Is a Negative Modulator of Platelet Function and Thrombosis. J Am Heart Assoc 2020; 8:e011273. [PMID: 30791801 PMCID: PMC6474914 DOI: 10.1161/jaha.118.011273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Members of the regulator of G‐protein signaling (RGS) family inhibit G‐protein coupled receptor signaling by modulating G‐protein activity. In platelets, there are 3 different RGS isoforms that are expressed at the protein level, including RGS16. Recently, we have shown that CXCL12 regulates platelet function via RGS16. However, the role of RGS16 in platelet function and thrombus formation is poorly defined. Methods and Results We used a genetic knockout mouse model approach to examine the role(s) of RGS16 in platelet activation by using a host of in vitro and in vivo assays. We observed that agonist‐induced platelet aggregation, secretion, and integrin activation were much more pronounced in platelets from the RGS16 knockout (Rgs16−/−) mice relative to their wild type (Rgs16+/+) littermates. Furthermore, the Rgs16−/− mice had a markedly shortened bleeding time and were more susceptible to vascular injury–associated thrombus formation than the controls. Conclusions These findings support a critical role for RGS16 in regulating hemostatic and thrombotic functions of platelets in mice. Hence, RGS16 represents a potential therapeutic target for modulating platelet function.
Collapse
Affiliation(s)
- Keziah R Hernandez
- 1 Pharmaceutical Sciences, School of Pharmacy The University of Texas at El Paso TX
| | - Zubair A Karim
- 1 Pharmaceutical Sciences, School of Pharmacy The University of Texas at El Paso TX
| | - Hanan Qasim
- 1 Pharmaceutical Sciences, School of Pharmacy The University of Texas at El Paso TX
| | - Kirk M Druey
- 2 Molecular Signal Transduction Section Laboratory of Allergic Diseases NIAID/NIH Bethesda MD
| | - Fatima Z Alshbool
- 1 Pharmaceutical Sciences, School of Pharmacy The University of Texas at El Paso TX
| | - Fadi T Khasawneh
- 1 Pharmaceutical Sciences, School of Pharmacy The University of Texas at El Paso TX
| |
Collapse
|
4
|
Synthetic peptides to produce antivenoms against the Cys-rich toxins of arachnids. Toxicon X 2020; 6:100038. [PMID: 32550593 PMCID: PMC7285918 DOI: 10.1016/j.toxcx.2020.100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Scorpion and spider envenomation is treated with the appropriate antivenoms, prepared as described by Césaire Auguste Phisalix and Albert Calmette in 1894. Such treatment requires the acquisition and manipulation of arachnid venoms, both very complicated procedures. Most of the toxins in the venoms of spiders and scorpions are extremely stable cysteine-rich peptide neurotoxins. Many strategies have been developed to obtain synthetic immunogens to facilitate the production of antivenoms against these toxins. For example, whole peptide toxins can be synthesized by solid-phase peptide synthesis (SPPS). Also, epitopes of the toxins can be identified and after the chemical synthesis of these peptide epitopes by SPPS, they can be coupled to protein carriers to develop efficient immunogens. Moreover, multiple antigenic peptides with a polylysine core can be designed and synthesized. This review focuses on the strategies developed to obtain synthetic immunogens for the production of antivenoms against the toxic Cys-rich peptides of scorpions and spiders.
Collapse
|
5
|
Design and Production of a Recombinant Hybrid Toxin to Raise Protective Antibodies Against Loxosceles Spider Venom. Toxins (Basel) 2019; 11:toxins11020108. [PMID: 30759862 PMCID: PMC6409891 DOI: 10.3390/toxins11020108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022] Open
Abstract
Human accidents with spiders of the genus Loxosceles are an important health problem affecting thousands of people worldwide. Patients evolve to severe local injuries and, in many cases, to systemic disturbances as acute renal failure, in which cases antivenoms are considered to be the most effective treatment. However, for antivenom production, the extraction of the venom used in the immunization process is laborious and the yield is very low. Thus, many groups have been exploring the use of recombinant Loxosceles toxins, particularly phospholipases D (PLDs), to produce the antivenom. Nonetheless, some important venom activities are not neutralized by anti-PLD antibodies. Astacin-like metalloproteases (ALMPs) are the second most expressed toxin acting on the extracellular matrix, indicating the importance of its inclusion in the antigen’s formulation to provide a better antivenom. Here we show the construction of a hybrid recombinant immunogen, called LgRec1ALP1, composed of hydrophilic regions of the PLD and the ALMP toxins from Loxosceles gaucho. Although the LgRec1ALP1 was expressed as inclusion bodies, it resulted in good yields and it was effective to produce neutralizing antibodies in mice. The antiserum neutralized fibrinogenolytic, platelet aggregation and dermonecrotic activities elicited by L. gaucho, L. laeta, and L. intermedia venoms, indicating that the hybrid recombinant antigen may be a valuable source for the production of protective antibodies against Loxosceles ssp. venoms. In addition, the hybrid recombinant toxin approach may enrich and expand the alternative antigens for antisera production for other venoms.
Collapse
|