1
|
Zhang C, Wang D, Li Y, Wang Z, Wu Z, Zhang Q, Jia H, Dong X, Qi L, Shi J, Shang Z. Gibberellin Positively Regulates Tomato Resistance to Tomato Yellow Leaf Curl Virus (TYLCV). PLANTS (BASEL, SWITZERLAND) 2024; 13:1277. [PMID: 38732492 PMCID: PMC11085062 DOI: 10.3390/plants13091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a prominent viral pathogen that adversely affects tomato plants. Effective strategies for mitigating the impact of TYLCV include isolating tomato plants from the whitefly, which is the vector of the virus, and utilizing transgenic lines that are resistant to the virus. In our preliminary investigations, we observed that the use of growth retardants increased the rate of TYLCV infection and intensified the damage to the tomato plants, suggesting a potential involvement of gibberellic acid (GA) in the conferring of resistance to TYLCV. In this study, we employed an infectious clone of TYLCV to inoculate tomato plants, which resulted in leaf curling and growth inhibition. Remarkably, this inoculation also led to the accumulation of GA3 and several other phytohormones. Subsequent treatment with GA3 effectively alleviated the TYLCV-induced leaf curling and growth inhibition, reduced TYLCV abundance in the leaves, enhanced the activity of antioxidant enzymes, and lowered the reactive oxygen species (ROS) levels in the leaves. Conversely, the treatment with PP333 exacerbated TYLCV-induced leaf curling and growth suppression, increased TYLCV abundance, decreased antioxidant enzyme activity, and elevated ROS levels in the leaves. The analysis of the gene expression profiles revealed that GA3 up-regulated the genes associated with disease resistance, such as WRKYs, NACs, MYBs, Cyt P450s, and ERFs, while it down-regulated the DELLA protein, a key agent in GA signaling. In contrast, PP333 induced gene expression changes that were the opposite of those caused by the GA3 treatment. These findings suggest that GA plays an essential role in the tomato's defense response against TYLCV and acts as a positive regulator of ROS scavenging and the expression of resistance-related genes.
Collapse
Affiliation(s)
- Chenwei Zhang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Modern Agricultural Science and Technology Laboratory, Shijiazhuang University, Shijiazhuang 050035, China
| | - Dandan Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Yan Li
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Zifan Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Zhiming Wu
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050031, China;
| | - Qingyin Zhang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Hongwei Jia
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
- College of Agricultural and Forestry Technology, Hebei North University, Zhangjiakou 075000, China;
| | - Xiaoxu Dong
- College of Agricultural and Forestry Technology, Hebei North University, Zhangjiakou 075000, China;
| | - Lianfen Qi
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Jianhua Shi
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Zhonglin Shang
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
2
|
Rodamilans B, Oliveros JC, San León D, Martínez-García PJ, Martínez-Gómez P, García JA, Rubio M. sRNA Analysis Evidenced the Involvement of Different Plant Viruses in the Activation of RNA Silencing-Related Genes and the Defensive Response Against Plum pox virus of 'GF305' Peach Grafted with 'Garrigues' Almond. PHYTOPATHOLOGY 2022; 112:2012-2021. [PMID: 35302895 DOI: 10.1094/phyto-01-22-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plum pox virus (PPV) causes sharka disease in Prunus trees. Peach (P. persica) trees are severely affected by PPV, and no definitive source of genetic resistance has been identified. However, previous results showed that PPV-resistant 'Garrigues' almond (P. dulcis) was able to transfer its resistance to 'GF305' peach through grafting, reducing symptoms and viral load in PPV-infected plants. A recent study tried to identify genes responsible for this effect by studying messenger RNA expression through RNA sequencing in peach and almond plants, before and after grafting and before and after PPV infection. In this work, we used the same peach and almond samples but focused the high-throughput analyses on small RNA (sRNA) expression. We studied massive sequencing data and found an interesting pattern of sRNA overexpression linked to antiviral defense genes that suggested activation of these genes followed by downregulation to basal levels. We also discovered that 'Garrigues' almond plants were infected by different plant viruses that were transferred to peach plants. The large amounts of viral sRNA found in grafted peaches indicated a strong RNA silencing antiviral response and led us to postulate that these plant viruses could be collaborating in the observed "Garrigues effect."
Collapse
Affiliation(s)
| | - Juan C Oliveros
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | - David San León
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | | | | | - Juan A García
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | - Manuel Rubio
- Department of Plant Breeding, CEBAS-CSIC, 30100 Murcia, Spain
| |
Collapse
|
3
|
Espinoza C, Bascou B, Calvayrac C, Bertrand C. Deciphering Prunus Responses to PPV Infection: A Way toward the Use of Metabolomics Approach for the Diagnostic of Sharka Disease. Metabolites 2021; 11:metabo11070465. [PMID: 34357359 PMCID: PMC8307365 DOI: 10.3390/metabo11070465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Sharka disease, caused by Plum pox virus (PPV), induces several changes in Prunus. In leaf tissues, the infection may cause oxidative stress and disrupt the photosynthetic process. Moreover, several defense responses can be activated after PPV infection and have been detected at the phytohormonal, transcriptomic, proteomic, and even translatome levels. As proposed in this review, some responses may be systemic and earlier to the onset of symptoms. Nevertheless, these changes are highly dependent among species, variety, sensitivity, and tissue type. In the case of fruit tissues, PPV infection can modify the ripening process, induced by an alteration of the primary metabolism, including sugars and organic acids, and secondary metabolism, including phenolic compounds. Interestingly, metabolomics is an emerging tool to better understand Prunus–PPV interactions mainly in primary and secondary metabolisms. Moreover, through untargeted metabolomics analyses, specific and early candidate biomarkers of PPV infection can be detected. Nevertheless, these candidate biomarkers need to be validated before being selected for a diagnostic or prognosis by targeted analyses. The development of a new method for early detection of PPV-infected trees would be crucial for better management of the outbreak, especially since there is no curative treatment.
Collapse
Affiliation(s)
- Christian Espinoza
- PSL Université de Paris EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France; (C.E.); (B.B.)
- S.A.S. AkiNaO, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France
| | - Benoît Bascou
- PSL Université de Paris EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France; (C.E.); (B.B.)
| | - Christophe Calvayrac
- Biocapteurs-Analyses-Environnement, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France;
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UMPC) Paris 6 et CNRS, Observatoire Océanologique, Banyuls-sur-Mer, CEDEX, 75005 Paris, France
| | - Cédric Bertrand
- PSL Université de Paris EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France; (C.E.); (B.B.)
- S.A.S. AkiNaO, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France
- Correspondence: ; Tel.: +33-(0)4-6866-2258
| |
Collapse
|
4
|
Gene Expression Analysis of Induced Plum pox virus (Sharka) Resistance in Peach ( Prunus persica) by Almond ( P. dulcis) Grafting. Int J Mol Sci 2021; 22:ijms22073585. [PMID: 33808287 PMCID: PMC8036523 DOI: 10.3390/ijms22073585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
No natural sources of resistance to Plum pox virus (PPV, sharka disease) have been identified in peach. However, previous studies have demonstrated that grafting a “Garrigues” almond scion onto “GF305” peach rootstock seedlings heavily infected with PPV can progressively reduce disease symptoms and virus accumulation. Furthermore, grafting a “Garrigues” scion onto the “GF305” rootstock has been shown to completely prevent virus infection. This study aims to analyse the rewiring of gene expression associated with this resistance to PPV transmitted by grafting through the phloem using RNA-Seq and RT-qPCR analysis. A total of 18 candidate genes were differentially expressed after grafting “Garrigues” almond onto healthy “GF305” peach. Among the up-regulated genes, a HEN1 homolog stands out, which, together with the differential expression of RDR- and DCL2-homologs, suggests that the RNA silencing machinery is activated by PPV infection and can contribute to the resistance induced by “Garrigues” almond. Glucan endo-1,3-beta D-glucosidase could be also relevant for the “Garrigues”-induced response, since its expression is much higher in “Garrigues” than in “GF305”. We also discuss the potential relevance of the following in PPV infection and “Garrigues”-induced resistance: several pathogenesis-related proteins; no apical meristem proteins; the transcription initiation factor, TFIIB; the speckle-type POZ protein; in addition to a number of proteins involved in phytohormone signalling.
Collapse
|
5
|
Effect of virus infection on the secondary metabolite production and phytohormone biosynthesis in plants. 3 Biotech 2020; 10:547. [PMID: 33269181 DOI: 10.1007/s13205-020-02541-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Plants have evolved according to their environmental conditions and continuously interact with different biological entities. These interactions induce many positive and negative effects on plant metabolism. Many viruses also associate with various plant species and alter their metabolism. Further, virus-plant interaction also alters the expression of many plant hormones. To overcome the biotic stress imposed by the virus's infestation, plants produce different kinds of secondary metabolites that play a significant role in plant defense against the viral infection. In this review, we briefly highlight the mechanism of virus infection, their influence on the plant secondary metabolites and phytohormone biosynthesis in response to the virus-plant interactions.
Collapse
|
6
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
7
|
Palukaitis P, Yoon JY. R gene mediated defense against viruses. Curr Opin Virol 2020; 45:1-7. [PMID: 32402925 DOI: 10.1016/j.coviro.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
The relationship of Resistance (R) gene-mediated defense to other forms of resistance in plants is considered, and the natures of the products of dominant and recessive R genes are reviewed. Various factors involved in expressing R gene-mediated resistance are described. These include phytohormones and plant effector molecules: the former regulating different pathways for disease resistance and the latter having direct effects on viral genomes or encoded proteins. Finally, the status of our knowledge concerning the cell-death hypersensitive response and its relationship to the actual resistance response involved in inhibiting virus infection is examined.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Nowon-gu, Seoul 01797, Republic of Korea.
| | - Ju-Yeon Yoon
- Virology Unit, Horticultural and Herbal Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea.
| |
Collapse
|
8
|
Rodamilans B, Valli A, García JA. Molecular Plant-Plum Pox Virus Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:6-17. [PMID: 31454296 DOI: 10.1094/mpmi-07-19-0189-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrián Valli
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
9
|
Sharif R, Xie C, Zhang H, Arnao MB, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz MA, Chen P, Li Y. Melatonin and Its Effects on Plant Systems. Molecules 2018; 23:E2352. [PMID: 30223442 PMCID: PMC6225270 DOI: 10.3390/molecules23092352] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a nontoxic biological molecule produced in a pineal gland of animals and different tissues of plants. It is an important secondary messenger molecule, playing a vital role in coping with various abiotic and biotic stresses. Melatonin serves as an antioxidant in postharvest technology and enhances the postharvest life of fruits and vegetables. The application of exogenous melatonin alleviated reactive oxygen species and cell damage induced by abiotic and biotic stresses by means of repairing mitochondria. Additionally, the regulation of stress-specific genes and the activation of pathogenesis-related protein and antioxidant enzymes genes under biotic and abiotic stress makes it a more versatile molecule. Besides that, the crosstalk with other phytohormones makes inroads to utilize melatonin against non-testified stress conditions, such as viruses and nematodes. Furthermore, different strategies have been discussed to induce endogenous melatonin activity in order to sustain a plant system. Our review highlighted the diverse roles of melatonin in a plant system, which could be useful in enhancing the environmental friendly crop production and ensure food safety.
Collapse
Affiliation(s)
- Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Chen Xie
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Qasid Ali
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey.
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Azher Nawaz
- Department of Horticulture, University college of Agriculture, University of Sargodha, Sargodha 40100, Pakistan.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|