1
|
Roy SD, Ramasamy S, Obbineni JM. An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review. Virusdisease 2024; 35:357-376. [PMID: 39071869 PMCID: PMC11269559 DOI: 10.1007/s13337-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 07/30/2024] Open
Abstract
Precise and timely diagnosis of plant viruses is a prerequisite for the implementation of efficient management strategies, considering factors like globalization of trade and climate change facilitating the spread of viruses that lead to agriculture yield losses of billions yearly worldwide. Symptomatic diagnosis alone may not be reliable due to the diverse symptoms and confusion with plant abiotic stresses. It is crucial to detect plant viruses accurately and reliably and do so with little time. A complete understanding of the various detection methods is necessary to achieve this. Enzyme-linked immunosorbent assay (ELISA), has become more popular as a method for detecting viruses but faces limitations such as antibody availability, cost, sample volume, and time. Advanced techniques like polymerase chain reaction (PCR) have surpassed ELISA with its various sensitive variants. Over the last decade, nucleic acid-based molecular methods have gained popularity and have quickly replaced other techniques, such as serological techniques for detecting plant viruses due to their specificity and accuracy. Hence, this review enables the reader to understand the strengths and weaknesses of each molecular technique starting with PCR and its variations, along with various isothermal amplification followed by DNA microarrays, and next-generation sequencing (NGS). As a result of the development of new technologies, NGS is becoming more and more accessible and cheaper, and it looks possible that this approach will replace others as a favoured approach for carrying out regular diagnosis. NGS is also becoming the method of choice for identifying novel viruses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00863-0.
Collapse
Affiliation(s)
- Subha Deep Roy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Jagan M. Obbineni
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
2
|
Chirkov S, Sheveleva A, Tsygankova S, Slobodova N, Sharko F, Petrova K, Mitrofanova I. First Report and Complete Genome Characterization of Cherry Virus A and Little Cherry Virus 1 from Russia. PLANTS (BASEL, SWITZERLAND) 2023; 12:3295. [PMID: 37765462 PMCID: PMC10534684 DOI: 10.3390/plants12183295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Virus diseases affect the yield and fruit quality and shorten the productive life of stone fruits (Prunus spp. in the family Rosaceae). Of over fifty known viruses infecting these crops, cherry virus A (CVA) is among the most common, and little cherry virus 1 (LChV1) is one of the most economically important. Using high-throughput sequencing, full-length genomes of CVA and LChV1 isolates, found on interspecies hybrids in the Prunus collection of the Nikita Botanical Gardens, Russia, were sequenced, assembled, and characterized. CVA was found in the P. cerasifera × P. armeniaca hybrid and in phylogenetic analysis clustered with non-cherry virus isolates. The LChV1 isolate Stepnoe was detected in ((P. cerasifera Ehrh. × P. armeniaca L.) × P. brigantiaca Vill.) trihybrid suggesting that both P. cerasifera and P. brigantiaca potentially can be the LChV1 hosts. The isolate Stepnoe was most closely related to the Greece isolate G15_3 from sweet cherry, sharing 77.3% identity at the nucleotide level. Possibly, the highly divergent Russian isolate represents one more phylogroup of this virus. This is the first report of CVA and LChV1 from Russia, expanding the information on their geographical distribution and genetic diversity.
Collapse
Affiliation(s)
- Sergei Chirkov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Anna Sheveleva
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Svetlana Tsygankova
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (S.T.); (N.S.); (F.S.); (K.P.)
| | - Natalia Slobodova
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (S.T.); (N.S.); (F.S.); (K.P.)
- Faculty of Biology and Biotechnology, HSE University, 101000 Moscow, Russia
| | - Fedor Sharko
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (S.T.); (N.S.); (F.S.); (K.P.)
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina Petrova
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (S.T.); (N.S.); (F.S.); (K.P.)
- Research Center for Medical Genetics, 115552 Moscow, Russia
| | - Irina Mitrofanova
- Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia;
| |
Collapse
|
3
|
Conserved RNA secondary structure in Cherry virus A 5'-UTR associated with translation regulation. Virol J 2022; 19:91. [PMID: 35619168 PMCID: PMC9137147 DOI: 10.1186/s12985-022-01824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Background A variety of cis-acting RNA elements with structures in the 5′- or 3′-untranslated region (UTR) of viral genomes play key roles in viral translation. Cherry virus A (CVA) is a member of the genus Capillovirus in the family Betaflexiviridae. It has a positive single-stranded RNA genome of ~ 7400 nucleotides (nt). The length of the CVA 5′-UTR is ~ 100 nt; however, the function of this long UTR has not yet been reported. Methods Molecular and phylogenetic analyses were performed on 75 CVA sequences, which could be divided into four groups, and the RNA secondary structure was predicted in four CVA 5′-UTR types. These four CVA 5′-UTR types were then inserted upstream of the firefly luciferase reporter gene FLuc (FLuc), and in vitro translation of the corresponding transcripts was evaluated using wheat germ extract (WGE). Then, in-line structure probing was performed to reveal the conserved RNA structures in CVA-5′UTR. Results The four CVA 5′-UTR types appeared to have a conserved RNA structure, and the FLuc construct containing these four CVA 5′-UTR types increased the translation of FLuc by 2–3 folds, suggesting weak translation enhancement activity. Mutations in CVA 5′-UTR suppressed translation, suggesting that the conserved RNA structure was important for function. Conclusion The conserved RNA secondary structure was identified by structural evolution analysis of different CVA isolates and was found to regulate translation.
Collapse
|
4
|
Ma Y, Li S. Purification of Total RNAs and Small RNAs from Fruit Tree Leaf Tissues. Methods Mol Biol 2022; 2400:217-224. [PMID: 34905205 DOI: 10.1007/978-1-0716-1835-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perennial fruit crops are susceptible to many viral pathogens, which often lead to declines in quality and yield. For the production of good quality and virus-free propagation materials, conventional molecular detection methods combining high throughput sequencing technology have been widely applied to virus detection and discovery in fruit trees. Recovery of high-quality RNAs from fruit tree leaf tissues, the critical step for the subsequent molecular analysis, is often complicated by the presence of high levels of RNases and problematic biomolecules. Therefore, the universal extraction methods often require modification according to different properties of various tissues. In this chapter, we provide a set of methods that have been used successfully to isolate total RNAs and small RNAs from various fruit tree leaf tissues and as examples, presented in detail of a modified TRIzol method for total RNAs purification from mulberry (Morus alba L.) leaf tissues and an alternative small RNAs purification protocol using mirVana™ miRNA isolation kit (Ambion/Life Technologies) for some fruit tree leaf tissues. The protocols described here aim to provide examples of what have worked successfully for a range of fruit trees and may be successful for a given sample in the future.
Collapse
Affiliation(s)
- Yuxin Ma
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shifang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Investigation of P1/HC-Pro-Mediated ABA/Calcium Signaling Responses via Gene Silencing through High- and Low-Throughput RNA-seq Approaches. Viruses 2021; 13:v13122349. [PMID: 34960618 PMCID: PMC8708664 DOI: 10.3390/v13122349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
The P1/HC-Pro viral suppressor of potyvirus suppresses posttranscriptional gene silencing (PTGS). The fusion protein of P1/HC-Pro can be cleaved into P1 and HC-Pro through the P1 self-cleavage activity, and P1 is necessary and sufficient to enhance PTGS suppression of HC-Pro. To address the modulation of gene regulatory relationships induced by turnip mosaic virus (TuMV) P1/HC-Pro (P1/HC-ProTu), a comparative transcriptome analysis of three types of transgenic plants (P1Tu, HC-ProTu, and P1/HC-ProTu) were conducted using both high-throughput (HTP) and low-throughput (LTP) RNA-Seq strategies. The results showed that P1/HC-ProTu disturbed the endogenous abscisic acid (ABA) accumulation and genes in the signaling pathway. Additionally, the integrated responses of stress-related genes, in particular to drought stress, cold stress, senescence, and stomatal dynamics, altered the expressions by the ABA/calcium signaling. Crosstalk among the ABA, jasmonic acid, and salicylic acid pathways might simultaneously modulate the stress responses triggered by P1/HC-ProTu. Furthermore, the LTP network analysis revealed crucial genes in common with those identified by the HTP network in this study, demonstrating the effectiveness of the miniaturization of the HTP profile. Overall, our findings indicate that P1/HC-ProTu-mediated suppression in RNA silencing altered the ABA/calcium signaling and a wide range of stress responses.
Collapse
|
6
|
Current Developments and Challenges in Plant Viral Diagnostics: A Systematic Review. Viruses 2021; 13:v13030412. [PMID: 33807625 PMCID: PMC7999175 DOI: 10.3390/v13030412] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
Plant viral diseases are the foremost threat to sustainable agriculture, leading to several billion dollars in losses every year. Many viruses infecting several crops have been described in the literature; however, new infectious viruses are emerging frequently through outbreaks. For the effective treatment and prevention of viral diseases, there is great demand for new techniques that can provide accurate identification on the causative agents. With the advancements in biochemical and molecular biology techniques, several diagnostic methods with improved sensitivity and specificity for the detection of prevalent and/or unknown plant viruses are being continuously developed. Currently, serological and nucleic acid methods are the most widely used for plant viral diagnosis. Nucleic acid-based techniques that amplify target DNA/RNA have been evolved with many variants. However, there is growing interest in developing techniques that can be based in real-time and thus facilitate in-field diagnosis. Next-generation sequencing (NGS)-based innovative methods have shown great potential to detect multiple viruses simultaneously; however, such techniques are in the preliminary stages in plant viral disease diagnostics. This review discusses the recent progress in the use of NGS-based techniques for the detection, diagnosis, and identification of plant viral diseases. New portable devices and technologies that could provide real-time analyses in a relatively short period of time are prime important for in-field diagnostics. Current development and application of such tools and techniques along with their potential limitations in plant virology are likewise discussed in detail.
Collapse
|
7
|
Tahzima R, Foucart Y, Peusens G, Beliën T, Massart S, De Jonghe K. High-Throughput Sequencing Assists Studies in Genomic Variability and Epidemiology of Little Cherry Virus 1 and 2 infecting Prunus spp. in Belgium. Viruses 2019; 11:E592. [PMID: 31261922 PMCID: PMC6669712 DOI: 10.3390/v11070592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
Little cherry disease, caused by little cherry virus 1 (LChV-1) and little cherry virus 2 (LChV-2), which are both members of the family Closteroviridae, severely affects sweet (Prunus avium L.) and sour cherry (P. cerasus L.) orchards lifelong production worldwide. An intensive survey was conducted across different geographic regions of Belgium to study the disease presence on these perennial woody plants and related species. Symptomatic as well as non-symptomatic Prunus spp. trees tested positive via RT-PCR for LChV-1 and -2 in single or mixed infections, with a slightly higher incidence for LChV-1. Both viruses were widespread and highly prevalent in nearly all Prunus production areas as well as in private gardens and urban lane trees. The genetic diversity of Belgian LChV-1 and -2 isolates was assessed by Sanger sequencing of partial genomic regions. A total RNA High-Throughput Sequencing (HTS) approach confirmed the presence of both viruses, and revealed the occurrence of other Prunus-associated viruses, namely cherry virus A (CVA), prune dwarf virus (PDV) and prunus virus F (PrVF). The phylogenetic inference from full-length genomes revealed well-defined evolutionary phylogroups with high genetic variability and diversity for LChV-1 and LChV-2 Belgian isolates, yet with little or no correlation with planting area or cultivated varieties. The global diversity and the prevalence in horticultural areas of LChV-1 and -2 variants, in association with other recently described fruit tree viruses, are of particular concern. Future epidemiological implications as well as new investigation avenues are exhaustively discussed.
Collapse
Affiliation(s)
- Rachid Tahzima
- Plant Sciences, Fisheries and Food (ILVO), Flanders Research Institute for Agriculture, 9820 Merelbeke, Belgium
- Department of Integrated and Urban Phytopathology, University of Liège (ULg) - Gembloux Agro-Bio tech, 5030 Gembloux, Belgium
| | - Yoika Foucart
- Plant Sciences, Fisheries and Food (ILVO), Flanders Research Institute for Agriculture, 9820 Merelbeke, Belgium
| | - Gertie Peusens
- Department of Zoology, Proefcentrum Fruitteelt (pcfruit), 3800 Sint-Truiden, Belgium
| | - Tim Beliën
- Department of Zoology, Proefcentrum Fruitteelt (pcfruit), 3800 Sint-Truiden, Belgium
| | - Sébastien Massart
- Department of Integrated and Urban Phytopathology, University of Liège (ULg) - Gembloux Agro-Bio tech, 5030 Gembloux, Belgium
| | - Kris De Jonghe
- Plant Sciences, Fisheries and Food (ILVO), Flanders Research Institute for Agriculture, 9820 Merelbeke, Belgium.
| |
Collapse
|
8
|
Maliogka VI, Minafra A, Saldarelli P, Ruiz-García AB, Glasa M, Katis N, Olmos A. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies. Viruses 2018; 10:E436. [PMID: 30126105 PMCID: PMC6116224 DOI: 10.3390/v10080436] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have been described in the last 5 years, some of them exhibiting novel genomic features that have led to the proposal of the creation of new genera, and the revision of the current virus taxonomy status. Interestingly, several of the newly identified viruses belong to virus genera previously unknown to infect fruit tree species (e.g., Fabavirus, Luteovirus) a fact that challenges our perspective of plant viruses in general. Finally, applied methodologies, including the use of different molecules as templates, as well as advantages and disadvantages and future directions of HTS in fruit tree virology are discussed.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Angelantonio Minafra
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy.
| | - Pasquale Saldarelli
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy.
| | - Ana B Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain.
| | - Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic.
| | - Nikolaos Katis
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain.
| |
Collapse
|