1
|
Mamun A, Kiari M, Sabantina L. A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications. MEMBRANES 2023; 13:830. [PMID: 37888002 PMCID: PMC10608773 DOI: 10.3390/membranes13100830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in dye-sensitized solar cells (DSSCs), membrane electrodes for fuel cells, catalytic applications such as oxygen reduction reactions (ORRs), hydrogen evolution reactions (HERs), and oxygen evolution reactions (OERs), and sensing applications such as biosensors, electrochemical sensors, and chemical sensors, providing a comprehensive insight into energy storage development and applications. This study focuses on the role of electrospun porous carbon nanofiber mats in improving energy storage and generation and contributes to a better understanding of the fabrication process of electrospun porous carbon nanofiber mats. In addition, a comprehensive review of various alternative preparation methods covering a wide range from natural polymers to synthetic carbon-rich materials is provided, along with insights into the current literature.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Mohamed Kiari
- Department of Physical Chemistry, Institute of Materials, University of Alicante, 03080 Alicante, Spain
| | - Lilia Sabantina
- Faculty of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences—HTW Berlin, Hochschule für Technik und Wirtschaft Berlin, 12459 Berlin, Germany
| |
Collapse
|
2
|
Nguyen TM, Choi CW, Lee JE, Heo D, Lee YW, Gu SH, Choi EJ, Lee JM, Devaraj V, Oh JW. Understanding the Role of M13 Bacteriophage Thin Films on a Metallic Nanostructure through a Standard and Dynamic Model. SENSORS (BASEL, SWITZERLAND) 2023; 23:6011. [PMID: 37447860 DOI: 10.3390/s23136011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The dynamic and surface manipulation of the M13 bacteriophage via the meeting application demands the creation of a pathway to design efficient applications with high selectivity and responsivity rates. Here, we report the role of the M13 bacteriophage thin film layer that is deposited on an optical nanostructure involving gold nanoparticles/SiO2/Si, as well as its influence on optical and geometrical properties. The thickness of the M13 bacteriophage layer was controlled by varying either the concentration or humidity exposure levels, and optical studies were conducted. We designed a standard and dynamic model based upon three-dimensional finite-difference time-domain (3D FDTD) simulations that distinguished the respective necessity of each model under variable conditions. As seen in the experiments, the origin of respective peak wavelength positions was addressed in detail with the help of simulations. The importance of the dynamic model was noted when humidity-based experiments were conducted. Upon introducing varied humidity levels, the dynamic model predicted changes in plasmonic properties as a function of changes in NP positioning, gap size, and effective index (this approach agreed with the experiments and simulated results). We believe that this work will provide fundamental insight into understanding and interpreting the geometrical and optical properties of the nanostructures that involve the M13 bacteriophage. By combining such significant plasmonic properties with the numerous benefits of M13 bacteriophage (like low-cost fabrication, multi-wavelength optical characteristics devised from a single structure, reproducibility, reversible characteristics, and surface modification to suit application requirements), it is possible to develop highly efficient integrated plasmonic biomaterial-based sensor nanostructures.
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Cheol Woong Choi
- Department of Internal Medicine, Medical Research Institute and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan-si 50612, Republic of Korea
- School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji-Eun Lee
- School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Damun Heo
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ye-Won Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sun-Hwa Gu
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Eun Jeong Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
- Center of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan 46214, Republic of Korea
| |
Collapse
|
3
|
Xu Y. Phage and phage lysins: New era of bio-preservatives and food safety agents. J Food Sci 2021; 86:3349-3373. [PMID: 34302296 DOI: 10.1111/1750-3841.15843] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
There has been an increase in the search and application of new antimicrobial agents as alternatives to use of chemical preservatives and antibiotic-like compounds by the food industry. The massive use of antibiotic has created a reservoir of antibiotic-resistant bacteria that find their way from farm to humans. Thus, there exists an imperative need to explore new antibacterial options and bacteriophages perfectly fit into the class of safe and potent antimicrobials. Phage bio-control has come a long way owing to advances with use of phage cocktails, recombinant phages, and phage lysins; however, there still exists unmet challenges that restrict the number of phage-based products reaching the market. Hence, further studies are required to explore for more efficient phage-based bio-control strategies that can become an integral part of food safety protocols. This review thus aims to highlight the recent developments made in the application of phages and phage enzymes covering pre-harvest as well as post-harvest usage. It further focuses on the major issues in both phage and phage lysin research hindering their optimum use while detailing out the advances made by researchers lately in this direction for full exploitation of phages and phage lysins in the food sector.
Collapse
Affiliation(s)
- Yingmin Xu
- Food Technology College Jiangsu Vocational College of Agriculture and Forestry, China
| |
Collapse
|
4
|
O'Connell L, Marcoux PR, Roupioz Y. Strategies for Surface Immobilization of Whole Bacteriophages: A Review. ACS Biomater Sci Eng 2021; 7:1987-2014. [PMID: 34038088 DOI: 10.1021/acsbiomaterials.1c00013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriophage immobilization is a key unit operation in emerging biotechnologies, enabling new possibilities for biodetection of pathogenic microbes at low concentration, production of materials with novel antimicrobial properties, and fundamental research on bacteriophages themselves. Wild type bacteriophages exhibit extreme binding specificity for a single species, and often for a particular subspecies, of bacteria. Since their specificity originates in epitope recognition by capsid proteins, which can be altered by chemical or genetic modification, their binding specificity may also be redirected toward arbitrary substrates and/or a variety of analytes in addition to bacteria. The immobilization of bacteriophages on planar and particulate substrates is thus an area of active and increasing scientific interest. This review assembles the knowledge gained so far in the immobilization of whole phage particles, summarizing the main chemistries, and presenting the current state-of-the-art both for an audience well-versed in bioconjugation methods as well as for those who are new to the field.
Collapse
Affiliation(s)
- Larry O'Connell
- Université Grenoble Alpes, CEA, LETI, F38054 Grenoble, France.,Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Yoann Roupioz
- Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| |
Collapse
|
5
|
Dhanker R, Hussain T, Tyagi P, Singh KJ, Kamble SS. The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applications. Front Microbiol 2021; 12:638003. [PMID: 33796089 PMCID: PMC8008120 DOI: 10.3389/fmicb.2021.638003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Micro-organisms colonized the world before the multi-cellular organisms evolved. With the advent of microscopy, their existence became evident to the mankind and also the vast processes they regulate, that are in direct interest of the human beings. One such process that intrigued the researchers is the ability to grow in presence of toxic metals. The process seemed to be simple with the metal ions being sequestrated into the inclusion bodies or cell surfaces enabling the conversion into nontoxic nanostructures. However, the discovery of genome sequencing techniques highlighted the genetic makeup of these microbes as a quintessential aspect of these phenomena. The findings of metal resistance genes (MRG) in these microbes showed a rather complex regulation of these processes. Since most of these MRGs are plasmid encoded they can be transferred horizontally. With the discovery of nanoparticles and their many applications from polymer chemistry to drug delivery, the demand for innovative techniques of nanoparticle synthesis increased dramatically. It is now established that microbial synthesis of nanoparticles provides numerous advantages over the existing chemical methods. However, it is the explicit use of biotechnology, molecular biology, metabolic engineering, synthetic biology, and genetic engineering tools that revolutionized the world of microbial nanotechnology. Detailed study of the micro and even nanolevel assembly of microbial life also intrigued biologists and engineers to generate molecular motors that mimic bacterial flagellar motor. In this review, we highlight the importance and tremendous hidden potential of bio-engineering tools in exploiting the area of microbial nanoparticle synthesis. We also highlight the application oriented specific modulations that can be done in the stages involved in the synthesis of these nanoparticles. Finally, the role of these nanoparticles in the natural ecosystem is also addressed.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Touseef Hussain
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Kawal Jeet Singh
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Shashank S. Kamble
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
6
|
Yoo YJ, Kim W, Ko JH, Kim YJ, Lee Y, Stanciu SG, Lee J, Kim S, Oh J, Song YM. Large-Area Virus Coated Ultrathin Colorimetric Sensors with a Highly Lossy Resonant Promoter for Enhanced Chromaticity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000978. [PMID: 32999838 PMCID: PMC7509654 DOI: 10.1002/advs.202000978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Indexed: 05/28/2023]
Abstract
Acclimatable colors in response to environmental stimuli, which are naturally endowed with some living things, can provide an opportunity for humans to recognize hazardous substances without taking empirical risks. Despite efforts to create artificial responsive colors, realistic applications in everyday life require an immediate/distinct colorimetric realization with wide chromatic selectivity. A dynamically responsive virus (M-13 phage)-based changeable coloring strategy is presented with a highly lossy resonant promoter (HLRP). An ultrathin M-13 phage layer for rapid response to external stimuli displays colorimetric behavior, even in its subtle swelling with strong resonances on HLRP, which is modeled using the complex effective refractive index. Optimal designs of HLRP for several material combinations allow selective chromatic responsivity from the corresponding wide color palette without modification of the dynamic responsive layer. As a practical demonstration, the spatially designed colorimetric indicator, which is insensitive/sensitive to external stimuli, provides an intuitive perception of environmental changes with hidden/revealed patterns. Furthermore, the proposed colorimetric sensor is tested by exposure to various volatile organic chemicals and endocrine disrupting chemicals for versatile detectability, and is fabricated in a wafer-scale sample for large-area scalability.
Collapse
Affiliation(s)
- Young Jin Yoo
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Won‐Geun Kim
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Joo Hwan Ko
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Yeong Jae Kim
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Stefan G. Stanciu
- Center for Microscopy‐Microanalysis and Information ProcessingPolitehnica University BucharestBucharest060042Romania
| | - Jong‐Min Lee
- Research Center for Energy Convergence and TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Seungchul Kim
- Department of Optics and Mechatronics EngineeringPusan National UniversityBusan46241Republic of Korea
| | - Jin‐Woo Oh
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
- Department of Nanoenergy EngineeringPusan National UniversityBusan46241Republic of Korea
- BK21 PLUS Nanoconvergence Technology DivisionPusan National UniversityBusan46241Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
- Anti‐Viral Research CenterGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
- AI Graduate SchoolGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| |
Collapse
|
7
|
Sawada T, Inomata H, Serizawa T. Filamentous virus-based membrane prepared by chemical cross-linking at liquid/liquid interface for a tailored molecular separation system. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Tronolone JJ, Orrill M, Song W, Kim HS, Lee BY, LeBlanc S. Electric Field Assisted Self-Assembly of Viruses into Colored Thin Films. NANOMATERIALS 2019; 9:nano9091310. [PMID: 31540252 PMCID: PMC6781059 DOI: 10.3390/nano9091310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
Filamentous viruses called M13 bacteriophages are promising materials for devices with thin film coatings because phages are functionalizable, and they can self-assemble into smectic helicoidal nanofilament structures. However, the existing “pulling” approach to align the nanofilaments is slow and limits potential commercialization of this technology. This study uses an applied electric field to rapidly align the nanostructures in a fixed droplet. The electric field reduces pinning of the three-phase contact line, allowing it to recede at a constant rate. Atomic force microscopy reveals that the resulting aligned structures resemble those produced via the pulling method. The field-assisted alignment results in concentric color bands quantified with image analysis of red, green, and blue line profiles. The alignment technique shown here could reduce self-assembly time from hours to minutes and lend itself to scalable manufacturing techniques such as inkjet printing.
Collapse
Affiliation(s)
- James J Tronolone
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Michael Orrill
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Wonbin Song
- Department of Mechanical Engineering, Korea University, Seoul 02841, Korea.
| | - Hyun Soo Kim
- Department of Mechanical Engineering, Korea University, Seoul 02841, Korea.
| | - Byung Yang Lee
- Department of Mechanical Engineering, Korea University, Seoul 02841, Korea.
| | - Saniya LeBlanc
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
9
|
Santos SB, Azeredo J. Bacteriophage-Based Biotechnological Applications. Viruses 2019; 11:v11080737. [PMID: 31405109 PMCID: PMC6722585 DOI: 10.3390/v11080737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 01/17/2023] Open
Abstract
Phages have shown a high biotechnological potential with numerous applications. The advent of high-resolution microscopy techniques aligned with omic and molecular tools are revealing innovative phage features and enabling new processes that can be further exploited for biotechnological applications in a wide variety of fields. This special issue is a collection of original and review articles focusing on the most recent advances in phage-based biotechnology with applications for human benefit.
Collapse
Affiliation(s)
- Sílvio B Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
10
|
Lee JM, Choi EJ, Park J, Devaraj V, Kim C, Han J, Kim WG, Kim K, Kang YC, Kim KH, Oh JW. Improvement of High Affinity and Selectivity on Biosensors Using Genetically Engineered Phage by Binding Isotherm Screening. Viruses 2019; 11:v11030248. [PMID: 30871031 PMCID: PMC6466209 DOI: 10.3390/v11030248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022] Open
Abstract
The genetically engineered M13 bacteriophage (M13 phage), developed via directed evolutionary screening process, can improve the sensitivity of sensors because of its selective binding to a target material. Herein, we propose a screening method to develop a selective and sensitive bioreporter for toxic material based on genetically engineered M13 phage. The paraquat (PQ)-binding M13 phage, developed by directed evolution, was used. The binding affinities of the PQ-binding M13 phage to PQ and similar molecules were analyzed using isothermal titration calorimetry (ITC). Based on the isotherms measured by ITC, binding affinities were calculated using the one-site binding model. The binding affinity was 5.161 × 10−7 for PQ, and 3.043 × 10−7 for diquat (DQ). The isotherm and raw ITC data show that the PQ-binding M13 phage does not selectively bind to difenzoquat (DIF). The phage biofilter experiment confirmed the ability of PQ-binding M13 bacteriophage to bind PQ. The surface-enhanced Raman scattering (SERS) platform based on the bioreporter, PQ-binding M13 phage, exhibited 3.7 times the signal intensity as compared with the wild-type-M13-phage-coated platform.
Collapse
Affiliation(s)
- Jong-Min Lee
- Research Center for Energy Convergence and Technology, Pusan National University, Busan 46241, Korea.
| | - Eun Jung Choi
- Research Center for Energy Convergence and Technology, Pusan National University, Busan 46241, Korea.
| | - Juyun Park
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| | - Vasanthan Devaraj
- Research Center for Energy Convergence and Technology, Pusan National University, Busan 46241, Korea.
| | - ChunTae Kim
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Korea.
| | - Jiye Han
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Korea.
| | - Won-Geun Kim
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Korea.
| | - Kyujung Kim
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Yong-Cheol Kang
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| | - Kwang Ho Kim
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea.
| | - Jin-Woo Oh
- Research Center for Energy Convergence and Technology, Pusan National University, Busan 46241, Korea.
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Korea.
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
11
|
The Robust Self-Assembling Tubular Nanostructures Formed by gp053 from Phage vB_EcoM_FV3. Viruses 2019; 11:v11010050. [PMID: 30641882 PMCID: PMC6357053 DOI: 10.3390/v11010050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/02/2023] Open
Abstract
The recombinant phage tail sheath protein, gp053, from Escherichia coli infecting myovirus vB_EcoM_FV3 (FV3) was able to self-assemble into long, ordered and extremely stable tubular structures (polysheaths) in the absence of other viral proteins. TEM observations revealed that those protein nanotubes varied in length (~10–1000 nm). Meanwhile, the width of the polysheaths (~28 nm) corresponded to the width of the contracted tail sheath of phage FV3. The formed protein nanotubes could withstand various extreme treatments including heating up to 100 °C and high concentrations of urea. To determine the shortest variant of gp053 capable of forming protein nanotubes, a set of N- or/and C-truncated as well as poly-His-tagged variants of gp053 were constructed. The TEM analysis of these mutants showed that up to 25 and 100 amino acid residues could be removed from the N and C termini, respectively, without disturbing the process of self-assembly. In addition, two to six copies of the gp053 encoding gene were fused into one open reading frame. All the constructed oligomers of gp053 self-assembled in vitro forming structures of different regularity. By using the modification of cysteines with biotin, the polysheaths were tested for exposed thiol groups. Polysheaths formed by the wild-type gp053 or its mutants possess physicochemical properties, which are very attractive for the construction of self-assembling nanostructures with potential applications in different fields of nanosciences.
Collapse
|
12
|
Sawada T, Murata Y, Marubayashi H, Nojima S, Morikawa J, Serizawa T. High Thermal Diffusivity in Thermally Treated Filamentous Virus-Based Assemblies with a Smectic Liquid Crystalline Orientation. Viruses 2018; 10:E608. [PMID: 30400191 PMCID: PMC6265685 DOI: 10.3390/v10110608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Polymers are generally considered thermal insulators because the amorphous arrangement of the polymeric chains reduces the mean free path of heat-conducting phonons. Recent studies reveal that individual chains of polymers with oriented structures could have high thermal conductivity, because such stretched polymeric chains effectively conduct phonons through polymeric covalent bonds. Previously, we have found that the liquid crystalline assembly composed of one of the filamentous viruses, M13 bacteriophages (M13 phages), shows high thermal diffusivity even though the assembly is based on non-covalent bonds. Despite such potential applicability of biopolymeric assemblies as thermal conductive materials, stability against heating has rarely been investigated. Herein, we demonstrate the maintenance of high thermal diffusivity in smectic liquid crystalline-oriented M13 phage-based assemblies after high temperature (150 °C) treatment. The liquid crystalline orientation of the M13 phage assemblies plays an important role in the stability against heating processes. Our results provide insight into the future use of biomolecular assemblies for reliable thermal conductive materials.
Collapse
Affiliation(s)
- Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology, Saitama 332-0012, Japan.
| | - Yuta Murata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Hironori Marubayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Shuichi Nojima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Junko Morikawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| |
Collapse
|