del Arco A, Fischer M, Becks L. Simultaneous Giant Virus and Virophage Quantification Using Droplet Digital PCR.
Viruses 2022;
14:1056. [PMID:
35632796 PMCID:
PMC9144729 DOI:
10.3390/v14051056]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
Viruses are an abundant component of aquatic systems, but their detection and quantification remain a challenge. Virophages co-replicate with giant viruses in the shared host cell, and can inhibit the production of new giant virus particles, thereby increasing the survival of the infected host population. Here, we present a protocol for Droplet Digital PCR (ddPCR) to quantify simultaneously giant virus and virophage in a mixed sample, enabling the rapid, culture-free and high throughput detection of virus and virophage. As virophage can be present as free virus particles or integrated into the virus host's genome as well as associated with organic particles, we developed a simple method that enables discrimination between free and particle-associated virophages. The latter include aggregated virophage particles as well as virophage integrated into the host genome. We used, for our experiments, a host-virus-virophage system consisting of Cafeteria burkhardae, CroV and mavirus. Our results show that ddPCR can be an efficient method to quantify virus and virophage, and we discuss potential applications of the method for studying ecological and evolutionary processes of virus and virophages.
Collapse