1
|
Laperriere SM, Minch B, Weissman JL, Hou S, Yeh YC, Ignacio-Espinoza JC, Ahlgren NA, Moniruzzaman M, Fuhrman JA. Phylogenetic proximity drives temporal succession of marine giant viruses in a five-year metagenomic time-series. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607631. [PMID: 39185240 PMCID: PMC11343133 DOI: 10.1101/2024.08.12.607631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nucleocytoplasmic Large DNA Viruses (NCLDVs, also called giant viruses) are widespread in marine systems and infect a broad range of microbial eukaryotes (protists). Recent biogeographic work has provided global snapshots of NCLDV diversity and community composition across the world's oceans, yet little information exists about the guiding 'rules' underpinning their community dynamics over time. We leveraged a five-year monthly metagenomic time-series to quantify the community composition of NCLDVs off the coast of Southern California and characterize these populations' temporal dynamics. NCLDVs were dominated by Algavirales (Phycodnaviruses, 59%) and Imitervirales (Mimiviruses, 36%). We identified clusters of NCLDVs with distinct classes of seasonal and non-seasonal temporal dynamics. Overall, NCLDV population abundances were often highly dynamic with a strong seasonal signal. The Imitervirales group had highest relative abundance in the more oligotrophic late summer and fall, while Algavirales did so in winter. Generally, closely related strains had similar temporal dynamics, suggesting that evolutionary history is a key driver of the temporal niche of marine NCLDVs. However, a few closely-related strains had drastically different seasonal dynamics, suggesting that while phylogenetic proximity often indicates ecological similarity, occasionally phenology can shift rapidly, possibly due to host-switching. Finally, we identified distinct functional content and possible host interactions of two major NCLDV orders-including connections of Imitervirales with primary producers like the diatom Chaetoceros and widespread marine grazers like Paraphysomonas and Spirotrichea ciliates. Together, our results reveal key insights on season-specific effect of phylogenetically distinct giant virus communities on marine protist metabolism, biogeochemical fluxes and carbon cycling.
Collapse
Affiliation(s)
- Sarah M. Laperriere
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - JL Weissman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA
| | - Shengwei Hou
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | | | | | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - Jed A. Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Veglia AJ, Rivera-Vicéns RE, Grupstra CGB, Howe-Kerr LI, Correa AMS. vAMPirus: A versatile amplicon processing and analysis program for studying viruses. Mol Ecol Resour 2024; 24:e13978. [PMID: 38775206 DOI: 10.1111/1755-0998.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/08/2024] [Indexed: 07/31/2024]
Abstract
Amplicon sequencing is an effective and increasingly applied method for studying viral communities in the environment. Here, we present vAMPirus, a user-friendly, comprehensive, and versatile DNA and RNA virus amplicon sequence analysis program, designed to support investigators in exploring virus amplicon sequencing data and running informed, reproducible analyses. vAMPirus intakes raw virus amplicon libraries and, by default, performs nucleotide- and amino acid-based analyses to produce results such as sequence abundance information, taxonomic classifications, phylogenies and community diversity metrics. The vAMPirus analytical framework leverages 16 different opensource tools and provides optional approaches that can increase the ratio of biological signal-to-noise and thereby reveal patterns that would have otherwise been masked. Here, we validate the vAMPirus analytical framework and illustrate its implementation as a general virus amplicon sequencing workflow by recapitulating findings from two previously published double-stranded DNA virus datasets. As a case study, we also apply the program to explore the diversity and distribution of a coral reef-associated RNA virus. vAMPirus is streamlined within Nextflow, offering straightforward scalability, standardization and communication of virus lineage-specific analyses. The vAMPirus framework is designed to be adaptable; community-driven analytical standards will continue to be incorporated as the field advances. vAMPirus supports researchers in revealing patterns of virus diversity and population dynamics in nature, while promoting study reproducibility and comparability.
Collapse
Affiliation(s)
- Alex J Veglia
- BioSciences Department, Rice University, Houston, Texas, USA
- Department of Biology, University of Puerto Rico Mayagüez, Mayagüez, Puerto Rico, USA
- EcoAzul, La Parguera, Puerto Rico, USA
| | - Ramón E Rivera-Vicéns
- EcoAzul, La Parguera, Puerto Rico, USA
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Sciences and Technology, Interamerican University of Puerto Rico at Barranquitas, Barranquitas, Puerto Rico, USA
| | - Carsten G B Grupstra
- BioSciences Department, Rice University, Houston, Texas, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Lauren I Howe-Kerr
- BioSciences Department, Rice University, Houston, Texas, USA
- Minderoo Foundation, Perth, Western Australia, Australia
| | - Adrienne M S Correa
- BioSciences Department, Rice University, Houston, Texas, USA
- Department of Environmental Science, Policy, and Management, University of California, California, USA
| |
Collapse
|
3
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
4
|
Gaïa M, Forterre P. From Mimivirus to Mirusvirus: The Quest for Hidden Giants. Viruses 2023; 15:1758. [PMID: 37632100 PMCID: PMC10458455 DOI: 10.3390/v15081758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Our perception of viruses has been drastically evolving since the inception of the field of virology over a century ago. In particular, the discovery of giant viruses from the Nucleocytoviricota phylum marked a pivotal moment. Their previously concealed diversity and abundance unearthed an unprecedented complexity in the virus world, a complexity that called for new definitions and concepts. These giant viruses underscore the intricate interactions that unfold over time between viruses and their hosts, and are themselves suspected to have played a significant role as a driving force in the evolution of eukaryotes since the dawn of this cellular domain. Whether they possess exceptional relationships with their hosts or whether they unveil the actual depths of evolutionary connections between viruses and cells otherwise hidden in smaller viruses, the attraction giant viruses exert on the scientific community and beyond continues to grow. Yet, they still hold surprises. Indeed, the recent identification of mirusviruses connects giant viruses to herpesviruses, each belonging to distinct viral realms. This discovery substantially broadens the evolutionary landscape of Nucleocytoviricota. Undoubtedly, the years to come will reveal their share of surprises.
Collapse
Affiliation(s)
- Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75012 Paris, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- Département de Microbiologie, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
5
|
Du X, Li X, Cheng K, Zhao W, Cai Z, Chen G, Zhou J. Virome reveals effect of Ulva prolifera green tide on the structural and functional profiles of virus communities in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163609. [PMID: 37100126 DOI: 10.1016/j.scitotenv.2023.163609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/03/2023]
Abstract
Viruses are widely distributed in marine environments, where they influence the transformation of matter and energy by modulating host metabolism. Driven by eutrophication, green tides are a rising concern in Chinese coastal areas, and are a serious ecological disaster that negatively affects coastal ecosystems and disrupts biogeochemical cycles. Although the composition of bacterial communities in green algae has been investigated, the diversity and roles of viruses in green algal blooms are largely unexplored. Therefore, the diversity, abundance, lifestyle, and metabolic potential of viruses in a natural bloom in Qingdao coastal area were investigated at three different stages (pre-bloom, during-bloom, and post-bloom) by metagenomics analysis. The dsDNA viruses, Siphoviridae, Myoviridae, Podoviridae, and Phycodnaviridae, were found to dominate the viral community. The viral dynamics exhibited distinct temporal patterns across different stages. The composition of the viral community varied during the bloom, especially in populations with low abundance. The lytic cycle was most predominant, and the abundance of lytic viruses increased slightly in the post-bloom stage. The diversity and richness of the viral communities varied distinctly during the green tide, and the post-bloom stage favored viral diversity and richness. The total organic carbon, dissolved oxygen, NO3-, NO2-, PO43-, chlorophyll-a contents, and temperature variably co-influenced the viral communities. The primary hosts included bacteria, algae, and other microplankton. Network analysis revealed the closer links between the viral communities as the bloom progressed. Functional prediction revealed that the viruses possibly influenced the biodegradation of microbial hydrocarbons and carbon by metabolic augmentation via auxiliary metabolic genes. The composition, structure, metabolic potential, and interaction taxonomy of the viromes differed significantly across the different stages of the green tide. The study demonstrated that the ecological event shaped the viral communities during algal bloom, and the viral communities played a significant role in phycospheric microecology.
Collapse
Affiliation(s)
- Xiaopeng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wei Zhao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
6
|
Kim KE, Joo HM, Lee TK, Kim HJ, Kim YJ, Kim BK, Ha SY, Jung SW. Covariance of Marine Nucleocytoplasmic Large DNA Viruses with Eukaryotic Plankton Communities in the Sub-Arctic Kongsfjorden Ecosystem: A Metagenomic Analysis of Marine Microbial Ecosystems. Microorganisms 2023; 11:microorganisms11010169. [PMID: 36677461 PMCID: PMC9862967 DOI: 10.3390/microorganisms11010169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) infect various marine eukaryotes. However, little is known about NCLDV diversity and their relationships with eukaryotic hosts in marine environments, the elucidation of which will advance the current understanding of marine ecosystems. This study characterizes the interplay between NCLDVs and the eukaryotic plankton community (EPC) in the sub-Arctic area using metagenomics and metabarcoding to investigate NCLDVs and EPC, respectively, in the Kongsfjorden ecosystem of Svalbard (Norway) in April and June 2018. Gyrodinium helveticum (Dinophyceae) is the most prevalent eukaryotic taxon in the EPC in April, during which time Mimiviridae (31.8%), Poxviridae (25.1%), Phycodnaviridae (14.7%) and Pandoraviridae (13.1%) predominate. However, in June, the predominant taxon is Aureococcus anophagefferens (Pelagophyceae), and the NCLDVs, Poxviridae (32.9%), Mimiviridae (29.1%), and Phycodnaviridae (18.5%) appear in higher proportions with an increase in Pelagophyceae, Bacillariophyceae, and Chlorophyta groups. Thus, differences in NCLDVs may be caused by changes in EPC composition in response to environmental changes, such as increases in water temperature and light intensity. Taken together, these findings are particularly relevant considering the anticipated impact of NCLDV-induced EPC control mechanisms on polar regions and, therefore, improve the understanding of the Sub-Arctic Kongsfjorden ecosystem.
Collapse
Affiliation(s)
- Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyoung Min Joo
- Unit of Next Generation IBRV Building Program, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Bo Kyung Kim
- Division of Polar Ocean Science Research, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sun-Yong Ha
- Division of Polar Ocean Science Research, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Correspondence: (S.-Y.H.); (S.W.J.)
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
- Correspondence: (S.-Y.H.); (S.W.J.)
| |
Collapse
|
7
|
Bi L, Yu DT, Han LL, Du S, Yuan CY, He JZ, Hu HW. Unravelling the ecological complexity of soil viromes: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152217. [PMID: 34890674 DOI: 10.1016/j.scitotenv.2021.152217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Viruses are extremely abundant and ubiquitous in soil, and significantly contribute to various terrestrial ecosystem processes such as biogeochemical nutrient cycling, microbiome regulation and community assembly, and host evolutionary dynamics. Despite their numerous dominance and functional importance, understanding soil viral ecology is a formidable challenge, because of the technological challenges to characterize the abundance, diversity and community compositions of viruses, and their interactions with other organisms in the complex soil environment. Viruses may engage in a myriad of biological interactions within soil food webs across a broad range of spatiotemporal scales and are exposed to various biotic and abiotic disturbances. Current studies on the soil viromes, however, often describe the complexity of their tremendous diversity, but lack of exploring their potential ecological roles. In this article, we summarized the major methods to decipher the ecology of soil viruses, discussed biotic and abiotic factors and global change factors that shape the diversity and composition of soil viromes, and the ecological roles of soil viruses. We also proposed a new framework to understand the ecological complexity of viruses from micro to macro ecosystem scales and to predict and unravel their activities in terrestrial ecosystems.
Collapse
Affiliation(s)
- Li Bi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dan-Ting Yu
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fujian 350007, China.
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuai Du
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng-Yu Yuan
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fujian 350007, China
| | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
8
|
Takahashi M, Wada K, Urayama SI, Masuda Y, Nagasaki K. Degenerate PCR Targeting the Major Capsid Protein Gene of HcRNAV and Related Viruses. Microbes Environ 2022; 37:ME21075. [PMID: 35400716 PMCID: PMC9763038 DOI: 10.1264/jsme2.me21075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterocapsa circularisquama RNA virus (HcRNAV) is the only dinoflagellate-infecting RNA virus that has been isolated to date. We herein investigated the diversity of the major capsid protein gene of HcRNAV and related viruses using degenerate PCR and in silico ana-lyses. Diverse sequences related to HcRNAV were successfully amplified from marine sediments. Amplicons contained conserved and variable regions; the latter were predicted to be located on the outer surface of the capsid. Our approach provides insights into the diversity of viruses that are difficult to isolate in the environment and will enhance rapidly growing metagenome sequence repositories.
Collapse
Affiliation(s)
- Michiko Takahashi
- Faculty of Science and Technology, Kochi University, 200 Otsu, Monobe-Otsu, Nankoku, Kochi 783–8502, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, Miyazaki 889–1692, Japan,Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889–1692, Japan
| | - Syun-ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Yuichi Masuda
- Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783–8502, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, 200 Otsu, Monobe-Otsu, Nankoku, Kochi 783–8502, Japan,Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783–8502, Japan, Corresponding author. E-mail: ; Tel: +81–88–864–6753
| |
Collapse
|
9
|
Zhang R, Endo H, Takemura M, Ogata H. RNA Sequencing of Medusavirus Suggests Remodeling of the Host Nuclear Environment at an Early Infection Stage. Microbiol Spectr 2021; 9:e0006421. [PMID: 34585975 PMCID: PMC8557863 DOI: 10.1128/spectrum.00064-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses of the phylum Nucleocytoviricota, or nucleo-cytoplasmic large DNA viruses (NCLDVs), undergo a cytoplasmic or nucleo-cytoplasmic cycle, the latter of which involves both nuclear and cytoplasmic compartments to proceed viral replication. Medusavirus, a recently isolated NCLDV, has a nucleo-cytoplasmic replication cycle in amoebas during which the host nuclear membrane apparently remains intact, a unique feature among amoeba-infecting NCLDVs. The medusavirus genome lacks most transcription genes but encodes a full set of histone genes. To investigate its infection strategy, we performed a time course RNA sequencing (RNA-seq) experiment. All viral genes were transcribed and classified into five temporal expression clusters. The immediate early genes (cluster 1, 42 genes) were mostly (83%) of unknown functions, frequently (95%) associated with a palindromic promoter-like motif, and often (45%) encoded putative nucleus-localized proteins. These results suggest massive reshaping of the host nuclear environment by viral proteins at an early stage of infection. Genes in other expression clusters (clusters 2 to 5) were assigned to various functional categories. The virally encoded core histone genes were in cluster 3, whereas the viral linker histone H1 gene was in cluster 1, suggesting they have distinct roles during the course of the virus infection. The transcriptional profile of the host Acanthamoeba castellanii genes was greatly altered postinfection. Several encystment-related host genes showed increased representation levels at 48 h postinfection, which is consistent with the previously reported amoeba encystment upon medusavirus infection. IMPORTANCE Medusavirus is an amoeba-infecting giant virus that was isolated from a hot spring in Japan. It belongs to the proposed family "Medusaviridae" in the phylum Nucleocytoviricota. Unlike other amoeba-infecting giant viruses, medusavirus initiates its DNA replication in the host nucleus without disrupting the nuclear membrane. Our RNA sequencing (RNA-seq) analysis of its infection course uncovered ordered viral gene expression profiles. We identified temporal expression clusters of viral genes and associated putative promoter motifs. The subcellular localization prediction showed a clear spatiotemporal correlation between gene expression timing and localization of the encoded proteins. Notably, the immediate early expression cluster was enriched in genes targeting the nucleus, suggesting the priority of remodeling the host intranuclear environment during infection. The transcriptional profile of amoeba genes was greatly altered postinfection.
Collapse
Affiliation(s)
- Ruixuan Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Japan
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Japan
| | - Masaharu Takemura
- Laboratory of Biology, Institute of Arts and Sciences, Tokyo University of Science, Shinjuku, Tokyo, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Japan
| |
Collapse
|
10
|
Ha AD, Moniruzzaman M, Aylward FO. High Transcriptional Activity and Diverse Functional Repertoires of Hundreds of Giant Viruses in a Coastal Marine System. mSystems 2021; 6:e0029321. [PMID: 34254826 PMCID: PMC8407384 DOI: 10.1128/msystems.00293-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses belonging to the Nucleocytoviricota phylum are globally distributed and include members with notably large genomes and complex functional repertoires. Recent studies have shown that these viruses are particularly diverse and abundant in marine systems, but the magnitude of actively replicating Nucleocytoviricota present in ocean habitats remains unclear. In this study, we compiled a curated database of 2,431 Nucleocytoviricota genomes and used it to examine the gene expression of these viruses in a 2.5-day metatranscriptomic time-series from surface waters of the California Current. We identified 145 viral genomes with high levels of gene expression, including 90 Imitervirales and 49 Algavirales viruses. In addition to recovering high expression of core genes involved in information processing that are commonly expressed during viral infection, we also identified transcripts of diverse viral metabolic genes from pathways such as glycolysis, the TCA cycle, and the pentose phosphate pathway, suggesting that virus-mediated reprogramming of central carbon metabolism is common in oceanic surface waters. Surprisingly, we also identified viral transcripts with homology to actin, myosin, and kinesin domains, suggesting that viruses may use these gene products to manipulate host cytoskeletal dynamics during infection. We performed phylogenetic analysis on the virus-encoded myosin and kinesin proteins, which demonstrated that most belong to deep-branching viral clades, but that others appear to have been acquired from eukaryotes more recently. Our results highlight a remarkable diversity of active Nucleocytoviricota in a coastal marine system and underscore the complex functional repertoires expressed by these viruses during infection. IMPORTANCE The discovery of giant viruses has transformed our understanding of viral complexity. Although viruses have traditionally been viewed as filterable infectious agents that lack metabolism, giant viruses can reach sizes rivalling cellular lineages and possess genomes encoding central metabolic processes. Recent studies have shown that giant viruses are widespread in aquatic systems, but the activity of these viruses and the extent to which they reprogram host physiology in situ remains unclear. Here, we show that numerous giant viruses consistently express central metabolic enzymes in a coastal marine system, including components of glycolysis, the TCA cycle, and other pathways involved in nutrient homeostasis. Moreover, we found expression of several viral-encoded actin, myosin, and kinesin genes, indicating viral manipulation of the host cytoskeleton during infection. Our study reveals a high activity of giant viruses in a coastal marine system and indicates they are a diverse and underappreciated component of microbial diversity in the ocean.
Collapse
Affiliation(s)
- Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
11
|
Quantitative Assessment of Nucleocytoplasmic Large DNA Virus and Host Interactions Predicted by Co-occurrence Analyses. mSphere 2021; 6:6/2/e01298-20. [PMID: 33883262 PMCID: PMC8546719 DOI: 10.1128/msphere.01298-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) are highly diverse and abundant in marine environments. However, the knowledge of their hosts is limited because only a few NCLDVs have been isolated so far. Taking advantage of the recent large-scale marine metagenomics census, in silico host prediction approaches are expected to fill the gap and further expand our knowledge of virus-host relationships for unknown NCLDVs. In this study, we built co-occurrence networks of NCLDVs and eukaryotic taxa to predict virus-host interactions using Tara Oceans sequencing data. Using the positive likelihood ratio to assess the performance of host prediction for NCLDVs, we benchmarked several co-occurrence approaches and demonstrated an increase in the odds ratio of predicting true positive relationships 4-fold compared to random host predictions. To further refine host predictions from high-dimensional co-occurrence networks, we developed a phylogeny-informed filtering method, Taxon Interaction Mapper, and showed it further improved the prediction performance by 12-fold. Finally, we inferred virophage-NCLDV networks to corroborate that co-occurrence approaches are effective for predicting interacting partners of NCLDVs in marine environments.IMPORTANCE NCLDVs can infect a wide range of eukaryotes, although their life cycle is less dependent on hosts compared to other viruses. However, our understanding of NCLDV-host systems is highly limited because few of these viruses have been isolated so far. Co-occurrence information has been assumed to be useful to predict virus-host interactions. In this study, we quantitatively show the effectiveness of co-occurrence inference for NCLDV host prediction. We also improve the prediction performance with a phylogeny-guided method, which leads to a concise list of candidate host lineages for three NCLDV families. Our results underpin the usage of co-occurrence approaches for the metagenomic exploration of the ecology of this diverse group of viruses.
Collapse
|
12
|
Endo H, Blanc-Mathieu R, Li Y, Salazar G, Henry N, Labadie K, de Vargas C, Sullivan MB, Bowler C, Wincker P, Karp-Boss L, Sunagawa S, Ogata H. Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat Ecol Evol 2020; 4:1639-1649. [DOI: 10.1038/s41559-020-01288-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
|
13
|
Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, Gorsky G, Guidi L, Iudicone D, Karsenti E, Lombard F, Ogata H, Pesant S, Sullivan MB, Wincker P, de Vargas C. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 2020; 18:428-445. [PMID: 32398798 DOI: 10.1038/s41579-020-0364-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.
Collapse
Affiliation(s)
- Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences-CSIC, Barcelona, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | | | - Damien Eveillard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Université de Nantes, CNRS, UMR6004, LS2N, Nantes, France
| | - Gabriel Gorsky
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | | | - Eric Karsenti
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Stephane Pesant
- PANGAEA, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie Francois Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. .,Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
14
|
Moniruzzaman M, Martinez-Gutierrez CA, Weinheimer AR, Aylward FO. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat Commun 2020; 11:1710. [PMID: 32249765 PMCID: PMC7136201 DOI: 10.1038/s41467-020-15507-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/09/2020] [Indexed: 01/11/2023] Open
Abstract
The discovery of eukaryotic giant viruses has transformed our understanding of the limits of viral complexity, but the extent of their encoded metabolic diversity remains unclear. Here we generate 501 metagenome-assembled genomes of Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from environments around the globe, and analyze their encoded functional capacity. We report a remarkable diversity of metabolic genes in widespread giant viruses, including many involved in nutrient uptake, light harvesting, and nitrogen metabolism. Surprisingly, numerous NCLDV encode the components of glycolysis and the TCA cycle, suggesting that they can re-program fundamental aspects of their host's central carbon metabolism. Our phylogenetic analysis of NCLDV metabolic genes and their cellular homologs reveals distinct clustering of viral sequences into divergent clades, indicating that these genes are virus-specific and were acquired in the distant past. Overall our findings reveal that giant viruses encode complex metabolic capabilities with evolutionary histories largely independent of cellular life, strongly implicating them as important drivers of global biogeochemical cycles.
Collapse
Affiliation(s)
| | | | - Alaina R Weinheimer
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
15
|
An Optimized Metabarcoding Method for Mimiviridae. Microorganisms 2020; 8:microorganisms8040506. [PMID: 32252306 PMCID: PMC7254495 DOI: 10.3390/microorganisms8040506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Mimiviridae is a group of viruses with large genomes and virions. Ecological relevance of Mimiviridae in marine environments has been increasingly recognized through the discoveries of novel isolates and metagenomic studies. To facilitate ecological profiling of Mimiviridae, we previously proposed a meta-barcoding approach based on 82 degenerate primer pairs (i.e., MEGAPRIMER) targeting the DNA polymerase gene of Mimiviridae. The method detected a larger number of operational taxonomic units (OTUs) in environmental samples than previous methods. However, it required large quantities of DNA and was laborious due to the use of individual primer pairs. Here, we examined coastal seawater samples using varying PCR conditions and purification protocols to streamline the MEGAPRIMER method. Mixing primer pairs in "cocktails" reduced the required amount of environmental DNA by 90%, while reproducing the results obtained by the original protocol. We compared the results obtained by the meta-barcoding approach with quantifications using qPCR for selected OTUs. This revealed possible amplification biases among different OTUs, but the frequency profiles for individual OTUs across multiple samples were similar to those obtained by qPCR. We anticipate that the newly developed MEGAPRIMER protocols will be useful for ecological investigation of Mimiviridae in a larger set of environmental samples.
Collapse
|
16
|
Needham DM, Poirier C, Hehenberger E, Jiménez V, Swalwell JE, Santoro AE, Worden AZ. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190086. [PMID: 31587639 PMCID: PMC6792449 DOI: 10.1098/rstb.2019.0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Giant viruses have remarkable genomic repertoires-blurring the line with cellular life-and act as top-down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to target wild predatory eukaryotes, followed by DNA sequencing and assembly, to recover novel giant viruses from the Pacific Ocean. We retrieved four 'PacV' partial genomes that range from 421 to 1605 Kb, with 13 contigs on average, including the largest marine viral genomic assembly reported to date. Phylogenetic analyses indicate that three of the new viruses span a clade with deep-branching members of giant Mimiviridae, incorporating the Cafeteria roenbergensis virus, the uncultivated terrestrial Faunusvirus, one PacV from a choanoflagellate and two PacV with unclear hosts. The fourth virus, oPacV-421, is phylogenetically related to viruses that infect haptophyte algae. About half the predicted proteins in each PacV have no matches in NCBI nr (e-value < 10-5), totalling 1735 previously unknown proteins; the closest affiliations of the other proteins were evenly distributed across eukaryotes, prokaryotes and viruses of eukaryotes. The PacVs encode many translational proteins and two encode eukaryotic-like proteins from the Rh family of the ammonium transporter superfamily, likely influencing the uptake of nitrogen during infection. cPacV-1605 encodes a microbial viral rhodopsin (VirR) and the biosynthesis pathway for the required chromophore, the second finding of a choanoflagellate-associated virus that encodes these genes. In co-collected metatranscriptomes, 85% of cPacV-1605 genes were expressed, with capsids, heat shock proteins and proteases among the most highly expressed. Based on orthologue presence-absence patterns across the PacVs and other eukaryotic viruses, we posit the observed viral groupings are connected to host lifestyles as heterotrophs or phototrophs. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- David M. Needham
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Elisabeth Hehenberger
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Valeria Jiménez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Jarred E. Swalwell
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195, USA
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| |
Collapse
|
17
|
Li Y, Endo H, Gotoh Y, Watai H, Ogawa N, Blanc-Mathieu R, Yoshida T, Ogata H. The Earth Is Small for "Leviathans": Long Distance Dispersal of Giant Viruses across Aquatic Environments. Microbes Environ 2019; 34:334-339. [PMID: 31378760 PMCID: PMC6759346 DOI: 10.1264/jsme2.me19037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Giant viruses of ‘Megaviridae’ have the ability to widely disperse around the globe. We herein examined ‘Megaviridae’ communities in four distinct aquatic environments (coastal and offshore seawater, brackish water, and hot spring freshwater), which are distantly located from each other (between 74 and 1,765 km), using a meta-barcoding method. We identified between 593 and 3,627 OTUs in each sample. Some OTUs were detected in all five samples tested as well as in many of the Tara Oceans metagenomes, suggesting the existence of viruses of this family in a wide range of habitats and the ability to circulate on the planet.
Collapse
Affiliation(s)
- Yanze Li
- Institute for Chemical Research, Kyoto University
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University
| | | | - Nana Ogawa
- Graduate School of Agriculture, Kyoto University
| | | | | | | |
Collapse
|
18
|
Aoki K, Hagiwara R, Akashi M, Sasaki K, Murata K, Ogata H, Takemura M. Fifteen Marseilleviruses Newly Isolated From Three Water Samples in Japan Reveal Local Diversity of Marseilleviridae. Front Microbiol 2019; 10:1152. [PMID: 31178850 PMCID: PMC6543897 DOI: 10.3389/fmicb.2019.01152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
The family Marseilleviridae, defined as a group of icosahedral double-stranded DNA viruses with particle size of approximately 250 nm and genome size of 350-380 kbp, belongs to the nucleo-cytoplasmic family of large DNA viruses. The family Marseilleviridae is currently classified into lineages A-E. In this study, we isolated 12 or 15 new members of the family Marseilleviridae from three sampling locations in Japan. Molecular phylogenetic analysis of the MCP genes showed that the new viruses could be further classified into three groups, hokutoviruses, kashiwazakiviruses, and kyotoviruses. Hokutoviruses were closely related to lineage B, kyotoviruses were related to lineage A, and kashiwazakiviruses were also classified into lineage B but a new putative subgroup of lineage B, revealing the diversity of this lineage. Interestingly, more than two viruses with slightly different MCP genes were isolated from a single water sample from a single location, i.e., two hokutoviruses and one kashiwazakivirus were isolated from a small reservoir, five kashiwazakiviruses from the mouth of a river, and five kyotoviruses from fresh water of a river, suggesting that several milliliters of water samples contain several types of giant viruses. Amoeba cells infected with hokutoviruses or kashiwazakiviruses exhibited a "bunch" formation consisting of normal and infected cells similarly to a tupanvirus, whereas cells infected with kyotoviruses or tokyovirus did not. These results suggest the previously unrecognized local diversity of the family Marseilleviridae in aquatic environments.
Collapse
Affiliation(s)
- Keita Aoki
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science, Tokyo, Japan
| | - Reika Hagiwara
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Motohiro Akashi
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Kenta Sasaki
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | | | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Japan
| | - Masaharu Takemura
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science, Tokyo, Japan.,Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|