1
|
Carella F, Prado P, García-March JR, Tena-Medialdea J, Melendreras EC, Porcellini A, Feola A. Measuring immunocompetence in the natural population and captive individuals of noble pen shell Pinna nobilis affected by Pinna nobilis Picornavirus (PnPV). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109664. [PMID: 38844186 DOI: 10.1016/j.fsi.2024.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Mass Mortality Events (MMEs) affecting the noble pen shell Pinna nobilis have been reported since 2016. In this work, we used an in vitro flow cytometric assay to evaluate phagocytosis, coupled with cytology and Electron Microscopy (TEM), to define animal immunocompetence following infection by P. nobilis Picornavirus (PnPV). The study was performed on 27 animals in July 2021 and May 2022 on two natural population from the Ebro Delta (Catalonia, Spain) and animals maintained in captivity at facilities in Valencia and Murcia Aquarium. Hemolymph was collected in the field and in captivity as a non-destructive sampling method. Based on dimension and internal complexity, flow cytometry identified three haemocyte types, distinguished in granulocytes, hyalinocytes and a third type, biggest in size and with high internal complexity and granularity. Those cells corresponded at ultrastructure to hemocytes with advanced phases of PnPV infection and related to cytopathic effect of the replicating virus displaying numerous Double Membrane Vesicles (DMVs) and cells corpse fusion. The results showed that pen shell in captivity had significantly lower Total Hemocyte Count (THC) compared with natural population of Alfacs Bay (mean number of 7-9 x 104 vs 2-5 x 105 cells/mL, respectively). FACS (Fluorescence-activated cell sorting) based phagocytosis analysis demonstrate that animals in captivity at IMEDMAR-UCV and Murcia Aquarium, had scarce or absent ability to phagocyte the two stimuli (Staphylococcus aureus and Zymosan A) (10,2 % ± 1,7 of positives) if compared with the natural population in Alfacs Bay (28,5 % ± 5,6 of positive). Ultrastructure images showed that PnPV itself can lead to an alteration of the hemocyte cytoskeleton, impairing the capabilities to perform an active phagocytosis and an efficient phagolysosome fusion.
Collapse
Affiliation(s)
- Francesca Carella
- Department of Biology, University of Naples Federico II, Via Cinthia Complesso di Monte Sant Angelo, Naples, Italy.
| | - Patricia Prado
- IMEDMAR-UCV, Universidad Católica de Valencia, 03710, Calpe, Alicante, Spain; Institut d'Estudis Professionals Aqüícoles i Ambientals de Catalunya (IEPAAC), 43540, La Ràpita, Tarragona, Spain
| | | | - José Tena-Medialdea
- IMEDMAR-UCV, Universidad Católica de Valencia, 03710, Calpe, Alicante, Spain
| | | | - Antonio Porcellini
- Department of Biology, University of Naples Federico II, Via Cinthia Complesso di Monte Sant Angelo, Naples, Italy
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Via Cinthia Complesso di Monte Sant Angelo, Naples, Italy
| |
Collapse
|
2
|
Characterization of Host Cell Potential Proteins Interacting with OsHV-1 Membrane Proteins. Viruses 2021; 13:v13122518. [PMID: 34960787 PMCID: PMC8705437 DOI: 10.3390/v13122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The interaction between viral membrane associate proteins and host cellular surface molecules should facilitate the attachment and entry of OsHV-1 into host cells. Thus, blocking the putative membrane proteins ORF25 and ORF72 of OsHV-1 with antibodies that have previously been reported to subdue OsHV-1 replication in host cells, especially ORF25. In this study, prey proteins in host hemocytes were screened by pull-down assay with recombinant baits ORF25 and ORF72, respectively. Gene Ontology (GO) analysis of these prey proteins revealed that most of them were mainly associated with binding, structural molecule activity and transport activity in the molecular function category. The protein–protein interaction (PPI) network of the prey proteins was constructed by STRING and clustered via K-means. For both ORF25 and ORF72, three clusters of these prey proteins were distinguished that were mainly associated with cytoskeleton assembly, energy metabolism and nucleic acid processing. ORF25 tended to function in synergy with actins, while ORF72 functioned mainly with tubulins. The above results suggest that these two putative membrane proteins, ORF25 and ORF72, might serve a role in the transport of viral particles with the aid of a cytoskeleton inside cells.
Collapse
|
3
|
Yang L, Su J. Type II Grass Carp Reovirus Infects Leukocytes but Not Erythrocytes and Thrombocytes in Grass Carp ( Ctenopharyngodon idella). Viruses 2021; 13:v13050870. [PMID: 34068469 PMCID: PMC8150784 DOI: 10.3390/v13050870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 01/25/2023] Open
Abstract
Grass carp reovirus (GCRV) causes serious losses to the grass carp industry. At present, infectious tissues of GCRV have been studied, but target cells remain unclear. In this study, peripheral blood cells were isolated, cultured, and infected with GCRV. Using quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot, indirect immunofluorescence, flow cytometry, and transmission electron microscopy observation, a model of GCRV infected blood cells in vitro was established. The experimental results showed GCRV could be detectable in leukocytes only, while erythrocytes and thrombocytes could not. The virus particles in leukocytes are wrapped by empty membrane vesicles that resemble phagocytic vesicles. The empty membrane vesicles of leukocytes are different from virus inclusion bodies in C. idella kidney (CIK) cells. Meanwhile, the expression levels of IFN1, IL-1β, Mx2, TNFα were significantly up-regulated in leukocytes, indicating that GCRV could cause the production of the related immune responses. Therefore, GCRV can infect leukocytes in vitro, but not infect erythrocytes and thrombocytes. Leukocytes are target cells in blood cells of GCRV infections. This study lays a theoretical foundation for the study of the GCRV infection mechanism and anti-GCRV immunity.
Collapse
Affiliation(s)
- Ling Yang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence: ; Tel./Fax: +86-27-8728-2227
| |
Collapse
|
4
|
Bai CM, Li YN, Chang PH, Jiang JZ, Xin LS, Li C, Wang JY, Wang CM. In situ hybridization revealed wide distribution of Haliotid herpesvirus 1 in infected small abalone, Haliotis diversicolor supertexta. J Invertebr Pathol 2020; 173:107356. [PMID: 32199833 DOI: 10.1016/j.jip.2020.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/19/2022]
Abstract
Ganglioneuritis was the primary pathologic change in infected abalone associated with Haliotid herpesvirus 1 (HaHV-1) infection, which eventually became known as abalone viral ganglioneuritis (AVG). However, the distribution of HaHV-1 in the other tissues and organs of infected abalone has not been systemically investigated. In the present study, the distribution of HaHV-1-CN2003 variant in different organs of small abalone, Haliotis diversicolor supertexta, collected at seven different time points post experimental infection, was investigated with histopathological examination and in situ hybridization (ISH) of HaHV-1 DNA. ISH signals were first observed in pedal ganglia at 48 h post injection, and were consistently observed in this tissue of challenged abalone. At the same time, increased cellularity accompanied by ISH signals was observed in some peripheral ganglia of mantle and kidney. At the end of infection period, lesions and co-localized ISH signals in infiltrated cells were detected occasionally in the mantle and hepatopancreas. Transmission electron microscope analysis revealed the presence of herpes-like viral particles in haemocyte nuclei of infected abalone. Our results indicated that, although HaHV-1-CN2003 was primarily neurotropic, it could infect other tissues including haemocytes.
Collapse
Affiliation(s)
- Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Ya-Nan Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Pen-Heng Chang
- Institute of Comparative and Molecular Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Zhe Jiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lu-Sheng Xin
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Chen Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jiang-Yong Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Chong-Ming Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|