1
|
Chen S, Fang Y, Fujita R, Khater EIM, Li Y, Wang W, Qian P, Huang L, Guo Z, Zhang Y, Li S. An Exploration of the Viral Coverage of Mosquito Viromes Using Meta-Viromic Sequencing: A Systematic Review and Meta-Analysis. Microorganisms 2024; 12:1899. [PMID: 39338573 PMCID: PMC11434593 DOI: 10.3390/microorganisms12091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this review was to delve into the extent of mosquito virome coverage (proportion of viral reads) via meta-viromic sequencing and uncover potential factors of heterogeneity that could impact this coverage. Data sources were PubMed, Web of Science, Embase, Scopus, Science-Direct, Google Scholar, and the China National Knowledge Infrastructure. Pooled coverage was estimated using random-effects modeling, and subgroup analyses further reveal potential heterogeneous factors. Within the three mosquito genera studied, Culex exhibited the highest pooled viral coverage of mosquito viromes at 7.09% (95% CI: 3.44-11.91%), followed by Anopheles at 5.28% (95% CI: 0.45-14.93%), and Aedes at 2.11% (95% CI: 0.58-7.66%). Subgroup analyses showed that multiple processing methods significantly affected the viral coverage of mosquito viromes, especially pre-treatment of mosquito samples with saline buffer/medium and antibiotics prior to DNase/RNase treatment and removal of the host genome prior to RNA library construction. In conclusion, the results of this study demonstrate that the viral coverage of mosquito viromes varies between mosquito genera and that pre-treatment of mosquito samples with saline buffer/medium and antibiotics before DNase/RNase treatment and removing host genomes prior to RNA library construction are critical for the detection of RNA viruses in mosquito vectors using meta-viromic sequencing.
Collapse
Affiliation(s)
- Shenglin Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yuan Fang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Emad I M Khater
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yuanyuan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenya Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Peijun Qian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Lulu Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Zhaoyu Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yi Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Yang Z, He Y, Li S, Meng J, Li N, Wang J. Isolation and Genomic Characterization of Kadipiro Virus from Mosquitoes in Yunnan, China. Vector Borne Zoonotic Dis 2024; 24:532-539. [PMID: 38683642 DOI: 10.1089/vbz.2023.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background: Kadipiro virus (KDV) is a species of the new 12 segmented RNA virus grouped under the genus Seadornavirus within the Reoviridae family. It has previously been isolated or detected from mosquito, Odonata, and bat feces in Indonesia, China, and Denmark, respectively. Here, we describe the isolation and characterization of a viral strain from mosquitoes in Yunnan Province, China. Methods: Mosquitoes were collected overnight using light traps in Shizong county, on July 17, 2023. Virus was isolated from the mosquito homogenate and grown using baby hamster kidney and Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full-genome sequences of the strain were determined by full-length amplification of cDNAs and sequenced using next-generation sequencing. Results: We isolated a viral strain (SZ_M48) from mosquitoes (Culex tritaeniorhynchus Giles) that caused cytopathogenic effects in C6/36 cells. AGE analysis indicated a genome consisting of 12 segments of double-stranded RNA that demonstrated a "6-5-1" pattern, similar to the migrating bands of KDV. Phylogenetic analysis based on the full-genome sequence revealed that SZ_M48 is more clustered with KDV isolates from Hubei and Shangdong in China than with Indonesian and Danish strains. The identity between SZ_M48 and SDKL1625 (Shandong, China) is slightly lower than that of QTM27331 (Hubei, China), and the identity with JKT-7075 (Indonesia) and 21164-6/M.dau/DK (Denmark) is the lowest. Conclusion: The full-genome sequence of the new KDV strain described in this study may be useful for surveillance of the evolutionary characteristics of KDVs. Moreover, these findings extend the knowledge about the genomic diversity, potential vectors, and the distribution of KDVs in China.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
3
|
Nurmukanova V, Matsvay A, Gordukova M, Shipulin G. Square the Circle: Diversity of Viral Pathogens Causing Neuro-Infectious Diseases. Viruses 2024; 16:787. [PMID: 38793668 PMCID: PMC11126052 DOI: 10.3390/v16050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential.
Collapse
Affiliation(s)
- Varvara Nurmukanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Alina Matsvay
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Maria Gordukova
- G. Speransky Children’s Hospital No. 9, 123317 Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| |
Collapse
|
4
|
Li Z, Xia H, Rao G, Fu Y, Chong T, Tian K, Yuan Z, Cao S. Cryo-EM structures of Banna virus in multiple states reveal stepwise detachment of viral spikes. Nat Commun 2024; 15:2284. [PMID: 38480794 PMCID: PMC10937716 DOI: 10.1038/s41467-024-46624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Banna virus (BAV) is the prototype Seadornavirus, a class of reoviruses for which there has been little structural study. Here, we report atomic cryo-EM structures of three states of BAV virions-surrounded by 120 spikes (full virions), 60 spikes (partial virions), or no spikes (cores). BAV cores are double-layered particles similar to the cores of other non-turreted reoviruses, except for an additional protein component in the outer capsid shell, VP10. VP10 was identified to be a cementing protein that plays a pivotal role in the assembly of BAV virions by directly interacting with VP2 (inner capsid), VP8 (outer capsid), and VP4 (spike). Viral spikes (VP4/VP9 heterohexamers) are situated on top of VP10 molecules in full or partial virions. Asymmetrical electrostatic interactions between VP10 monomers and VP4 trimers are disrupted by high pH treatment, which is thus a simple way to produce BAV cores. Low pH treatment of BAV virions removes only the flexible receptor binding protein VP9 and triggers significant conformational changes in the membrane penetration protein VP4. BAV virions adopt distinct spatial organization of their surface proteins compared with other well-studied reoviruses, suggesting that BAV may have a unique mechanism of penetration of cellular endomembranes.
Collapse
Affiliation(s)
- Zhiqiang Li
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Han Xia
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Guibo Rao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Yan Fu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Tingting Chong
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Kexing Tian
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhiming Yuan
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| | - Sheng Cao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
5
|
Yang Z, He Y, Chen Y, Meng J, Li N, Li S, Wang J. Full genome characterization and evolutionary analysis of Banna virus isolated from Culicoides, mosquitoes and ticks in Yunnan, China. Front Cell Infect Microbiol 2023; 13:1283580. [PMID: 38035340 PMCID: PMC10687475 DOI: 10.3389/fcimb.2023.1283580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Banna virus (BAV), a potential pathogen that may cause human encephalitis, is the prototype species of genus Seadornaviru within the family Reoviridae, and has been isolated from a variety of blood-sucking insects and mammals in Asia. Methods Culicoides, Mosquitoes, and Ticks were collected overnight in Yunnan, China, during 2016-2023 using light traps. Virus was isolated from these collected blood-sucking insects and grown using Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full genome sequences of the BAVs were determined by full-length amplification of cDNAs (FLAC) and sequenced using next-generation sequencing. Results In this study, 13 strains BAV were isolated from Culicoides, Mosquitoes and Ticks. Their viral genome consisted of 12 segments of double-stranded RNA (dsRNA), and with three distinct distribution patterns. Sequence analysis showed that Seg-5 of four strains (SJ_M46, SJ_M49, JC_M19-13 and JC_C24-13) has 435 bases nucleotide sequence insertions in their ORF compared to other BAVs, resulting in the length of Seg-5 up to 2128 nt. There are 34 bases sequence deletion in Seg-9 of 3 strains (WS_T06, MS_M166 and MS_M140). Comparison of the coding sequences of VP1, VP2, VP5, VP9 and VP12 of the 13 BAV strains, the results show that VP1, VP2 and VP12 are characterised by high levels of sequence conservation, while VP9 is highly variable, under great pressure to adapt and may be correlated with serotype. While also variable, VP5 appears to be under less adaptive pressure than VP9. Additionally, phylogenetic analysis indicates that the 13 BAV strains locate in the same evolutionary cluster as BAVs isolated from various blood-sucking insects, and are clustered according to geographical distribution. Conclusion The data obtained herein would be beneficial for the surveillance of evolutionary characteristics of BAV in China and neighboring countries as well as extend the knowledge about its genomic diversity and geographic distribution.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yiju Chen
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
6
|
Hernandez-Valencia JC, Muñoz-Laiton P, Gómez GF, Correa MM. A Systematic Review on the Viruses of Anopheles Mosquitoes: The Potential Importance for Public Health. Trop Med Infect Dis 2023; 8:459. [PMID: 37888587 PMCID: PMC10610971 DOI: 10.3390/tropicalmed8100459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Anopheles mosquitoes are the vectors of Plasmodium, the etiological agent of malaria. In addition, Anopheles funestus and Anopheles gambiae are the main vectors of the O'nyong-nyong virus. However, research on the viruses carried by Anopheles is scarce; thus, the possible transmission of viruses by Anopheles is still unexplored. This systematic review was carried out to identify studies that report viruses in natural populations of Anopheles or virus infection and transmission in laboratory-reared mosquitoes. The databases reviewed were EBSCO-Host, Google Scholar, Science Direct, Scopus and PubMed. After the identification and screening of candidate articles, a total of 203 original studies were included that reported on a variety of viruses detected in Anopheles natural populations. In total, 161 viruses in 54 species from 41 countries worldwide were registered. In laboratory studies, 28 viruses in 15 Anopheles species were evaluated for mosquito viral transmission capacity or viral infection. The viruses reported in Anopheles encompassed 25 viral families and included arboviruses, probable arboviruses and Insect-Specific Viruses (ISVs). Insights after performing this review include the need for (1) a better understanding of Anopheles-viral interactions, (2) characterizing the Anopheles virome-considering the public health importance of the viruses potentially transmitted by Anopheles and the significance of finding viruses with biological control activity-and (3) performing virological surveillance in natural populations of Anopheles, especially in the current context of environmental modifications that may potentiate the expansion of the Anopheles species distribution.
Collapse
Affiliation(s)
- Juan C. Hernandez-Valencia
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Paola Muñoz-Laiton
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Giovan F. Gómez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| |
Collapse
|
7
|
Tian F, He J, Shang S, Chen Z, Tang Y, Lu M, Huang C, Guo X, Tong Y. Survey of mosquito species and mosquito-borne viruses in residential areas along the Sino-Vietnam border in Yunnan Province in China. Front Microbiol 2023; 14:1105786. [PMID: 36910188 PMCID: PMC9996012 DOI: 10.3389/fmicb.2023.1105786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Mosquitoes are capable of carrying complex pathogens, and their feeding habits on the mammalian blood can easily mediate the spread of viruses. Surveillance of mosquito-based arbovirus enables the early prevention and control of mosquito-borne arboviral diseases. The climate and geography of Yunnan Province in China are ideal for mosquitoes. Yunnan shares borders with several other countries; therefore, there exists a high risk of international transmission of mosquito-mediated infectious diseases. Previous studies have focused more on the Sino-Laos and Sino-Myanmar borders. Therefore, we focused on the neighborhoods of Malipo and Funing counties in Wenshan Prefecture, Yunnan Province, China, which are located along the Sino-Vietnam border, to investigate the species of mosquitoes and mosquito-borne viruses in the residential areas of this region. This study collected 10,800 mosquitoes from 29 species of 8 genera and grouped to isolate mosquito-borne viruses. In total, 62 isolates were isolated and classified into 11 viral categories. We demonstrated a new distribution of mosquito-borne viruses among mosquitoes in border areas, including Tembusu and Getah viruses, which can cause animal outbreaks. In addition, Dak Nong and Sarawak viruses originating from Vietnam and Malaysia, respectively, were identified for the first time in China, highlighting the complexity of mosquito-borne viruses in the Sino-Vietnam border region. The awareness of the importance of viral surveillance and prevention measures in border areas should be further encouraged to prevent future outbreaks of potentially infectious diseases.
Collapse
Affiliation(s)
- Fengjuan Tian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jimin He
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shanlin Shang
- Malipo County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Zhongyan Chen
- Malipo County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Yumei Tang
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Man Lu
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Changzhi Huang
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases Control, Puer, Yunnan, China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
8
|
Full Genome Sequencing of Three Sedoreoviridae Viruses Isolated from Culicoides spp. (Diptera, Ceratopogonidae) in China. Viruses 2022; 14:v14050971. [PMID: 35632713 PMCID: PMC9145729 DOI: 10.3390/v14050971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Sedoreoviridae is a family of viruses belonging to the order Reovirales and comprises six genera, two of which, Orbivirus and Seadornavirus, contain arboviruses that cause disease in humans and livestock. Areas such as Yunnan Province in southwestern China, have high arboviral activity due in part to warm and wet summers, which support high populations of biting flies such as mosquitoes and Culicoides. Three viral isolates previously obtained from Culicoides collected at cattle farms in Shizong County of Yunnan Province, China, between 2019 and 2020 were completely sequenced and identified as Banna virus (BAV) genotype A of Seadornavirus and serotypes 1 and 7 of epizootic hemorrhagic disease virus (EHDV) of Orbivirus. These results suggest that Culicoidestainanus and C. orientalis are potential vectors of BAV and EHDV, respectively, and represent the first association of a BAV with C. tainanus and of an arbovirus with C. orientalis. Analysis using VP9 generally agreed with the current groupings within this genus based on VP12, although the classification for some strains should be corrected. Furthermore, the placement of Kadipiro virus (KDV) and Liao ning virus (LNV) in Seadornavirus may need confirmation as phylogenetic analysis placed these viruses as sister to other species in the genus.
Collapse
|
9
|
Li J, Guo X, Li Y, Hu N, Sun J, Wu M, Zhou H, Hu Y. Evolutionary analysis of a newly isolated Banna virus strain from Yunnan, China. Arch Virol 2022; 167:1221-1223. [DOI: 10.1007/s00705-022-05403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022]
|
10
|
Glud HA, George S, Skovgaard K, Larsen LE. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs. APMIS 2021; 129:675-693. [PMID: 34586648 PMCID: PMC9297979 DOI: 10.1111/apm.13178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Humans and pigs share a close contact relationship, similar biological traits, and one of the highest estimated number of viruses compared to other mammalian species. The contribution and directionality of viral exchange between humans and pigs remain unclear for some of these viruses, but their transmission routes are important to characterize in order to prevent outbreaks of disease in both host species. This review collects and assesses the evidence to determine the likely transmission route of 27 viruses between humans and pigs.
Collapse
Affiliation(s)
- Helena Aagaard Glud
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sophie George
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Mia MM, Hasan M, Hasan MM, Khan SS, Rahman MN, Ahmed S, Basak A, Sakib MN, Banik S. Multi-epitope based subunit vaccine construction against Banna virus targeting on two outer proteins (VP4 and VP9): A computational approach. INFECTION GENETICS AND EVOLUTION 2021; 95:105076. [PMID: 34500093 DOI: 10.1016/j.meegid.2021.105076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Recently, RNA viruses have gained a mammoth concern for causing various outbreaks, and due to pandemics, they are acquiring additional attention throughout the world. An emerging RNA as well as vector-borne Banna Virus (BAV) is a human pathogen resulting in encephalitis, fever, headache, muscle aches, and severe coma. Besides human, pathogenic BAV was also detected from pigs, cattle, ticks, midges, and mosquitoes in Indonesia, China, and Vietnam. Due to high mutation tendency and dearth of a species barrier, this virus will consider as a significant threat in the near future throughout the planet, particularly in Africa. Despite of severe human case fatalities in several countries, there are no specific therapeutics, available vaccines, and other preventive measures against BAV. Thus, to find out the effective therapeutics and preventive strategies are crying exigency. In the present study, a unique multi-epitope-based peptide vaccine candidate is constructed using bioinformatics' tools that efficiently instigate immune cells for generating BAV antibodies. The potential vaccine candidates were developed using both T and B -cell epitopes. UniprotKB database was used to retrieve of two outer proteins (VP9 and VP4), and homologous sequences of BAV taxid: 7763, 649,604, 77,763, and 8453 were searched by NCBI BLAST. These serotypes are the most closely associated with the disease. Then combining the best-selected epitopes in various combinations with different adjuvants, three distinct vaccine candidates were formed. The validity tests were performed for the screened vaccine candidate regarding stability, allergenicity, and antigenicity parameters. Moreover, molecular dynamic simulations of the selected vaccine with TLR-8 immune receptor confirmed the stability of the binding pose and showed a significant response to immune cells. Thus, the results established that the designed chimeric peptide vaccine could enhance the immune response against BAV.
Collapse
Affiliation(s)
- Md Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh..
| | - Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh..
| | - Md Mahadi Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Sumaya Shargin Khan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammad Nahian Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ankita Basak
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Nazmuj Sakib
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Shrabonti Banik
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
12
|
Ren N, Wang X, Liang M, Tian S, Ochieng C, Zhao L, Huang D, Xia Q, Yuan Z, Xia H. Characterization of a novel reassortment Tibet orbivirus isolated from Culicoides spp. in Yunnan, PR China. J Gen Virol 2021; 102. [PMID: 34494948 PMCID: PMC8567429 DOI: 10.1099/jgv.0.001645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Orbiviruses are arboviruses with 10 double-stranded linear RNA segments, and some have been identified as pathogens of dramatic epizootics in both wild and domestic ruminants. Tibet orbivirus (TIBOV) is a new orbivirus isolated from hematophagous insects in recent decades, and, currently, most of the strains have been isolated from insects in PR China, except for two from Japan. In this study, we isolated a novel reassortment TIBOV strain, YN15-283-01, from Culicoides spp. To identify and understand more characteristics of YN15-283-01, electrophoresis profiles of the viral genome, electron microscopic observations, plaque assays, growth curves in various cell lines, and bioinformatic analysis were conducted. The results indicated that YN15-283-01 replicated efficiently in mosquito cells, rodent cells and several primate cells. Furthermore, the maximum likelihood phylogenetic trees and simplot analysis of the 10 segments indicated that YN15-283-01 is a natural reassortment isolate that had emerged mainly from XZ0906 and SX-2017a.
Collapse
Affiliation(s)
- Nanjie Ren
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiaoyu Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Mengying Liang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Shen Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical diseases,School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, PR China
| | - Christabel Ochieng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Doudou Huang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical diseases,School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, PR China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
13
|
Supriyono, Kuwata R, Torii S, Shimoda H, Ishijima K, Yonemitsu K, Minami S, Kuroda Y, Tatemoto K, Tran NTB, Takano A, Omatsu T, Mizutani T, Itokawa K, Isawa H, Sawabe K, Takasaki T, Yuliani DM, Abiyoga D, Hadi UK, Setiyono A, Hondo E, Agungpriyono S, Maeda K. Mosquito-borne viruses, insect-specific flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), Bogor virus (unassigned member of family Permutotetraviridae), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus) isolated from Indonesian mosquitoes. J Vet Med Sci 2020; 82:1030-1041. [PMID: 32448813 PMCID: PMC7399325 DOI: 10.1292/jvms.20-0261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mosquitoes transmit many kinds of arboviruses (arthropod-borne viruses), and numerous arboviral diseases have become serious problems in Indonesia. In this study, we conducted surveillance of mosquito-borne viruses at several sites in Indonesia during 2016-2018 for risk assessment of arbovirus infection and analysis of virus biodiversity in mosquito populations. We collected 10,015 mosquitoes comprising at least 11 species from 4 genera. Major collected mosquito species were Culex quinquefasciatus, Aedes albopictus, Culex tritaeniorhynchus, Aedes aegypti, and Armigeres subalbatus. The collected mosquitoes were divided into 285 pools and used for virus isolation using two mammalian cell lines, Vero and BHK-21, and one mosquito cell line, C6/36. Seventy-two pools showed clear cytopathic effects only in C6/36 cells. Using RT-PCR and next-generation sequencing approaches, these isolates were identified as insect flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), new permutotetravirus (designed as Bogor virus) (family Permutotetraviridae, genus Alphapermutotetravirus), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus). We believed that this large surveillance of mosquitoes and mosquito-borne viruses provides basic information for the prevention and control of emerging and re-emerging arboviral diseases.
Collapse
Affiliation(s)
- Supriyono
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Shun Torii
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kenzo Yonemitsu
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shohei Minami
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ngo Thuy Bao Tran
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ai Takano
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan
| | - Dewi Maria Yuliani
- Public Health Office of Tangerang District, Tigaraksa Subdistrict, Banten 15720, Indonesia
| | - Dimas Abiyoga
- Indonesian Research Center for Veterinary Sciences, Sesetan, Denpasar City, Bali 80223, Indonesia
| | - Upik Kesumawati Hadi
- Faculty of Veterinary Medicine, IPB University, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Agus Setiyono
- Faculty of Veterinary Medicine, IPB University, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Eiichi Hondo
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Srihadi Agungpriyono
- Faculty of Veterinary Medicine, IPB University, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
14
|
Yanase T, Murota K, Hayama Y. Endemic and Emerging Arboviruses in Domestic Ruminants in East Asia. Front Vet Sci 2020; 7:168. [PMID: 32318588 PMCID: PMC7154088 DOI: 10.3389/fvets.2020.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/10/2020] [Indexed: 02/04/2023] Open
Abstract
Epizootic congenital abnormalities caused by Akabane, Aino, and Chuzan viruses have damaged the reproduction of domestic ruminants in East Asia for many years. In the past, large outbreaks of febrile illness related to bovine ephemeral fever and Ibaraki viruses severely affected the cattle industry in that region. In recent years, vaccines against these viruses have reduced the occurrence of diseases, although the viruses are still circulating and have occasionally caused sporadic and small-scaled epidemics. Over a long-term monitoring period, many arboviruses other than the above-mentioned viruses have been isolated from cattle and Culicoides biting midges in Japan. Several novel arboviruses that may infect ruminants (e.g., mosquito- and tick-borne arboviruses) were recently reported in mainland China based on extensive surveillance. It is noteworthy that some are suspected of being associated with cattle diseases. Malformed calves exposed to an intrauterine infection with orthobunyaviruses (e.g., Peaton and Shamonda viruses) have been observed. Epizootic hemorrhagic disease virus serotype 6 caused a sudden outbreak of hemorrhagic disease in cattle in Japan. Unfortunately, the pathogenicity of many other viruses in ruminants has been uncertain, although these viruses potentially affect livestock production. As global transportation grows, the risk of an accidental incursion of arboviruses is likely to increase in previously non-endemic areas. Global warming will also certainly affect the distribution and active period of vectors, and thus the range of virus spreads will expand to higher-latitude regions. To prevent anticipated damages to the livestock industry, the monitoring system for arboviral circulation and incursion should be strengthened; moreover, the sharing of information and preventive strategies will be essential in East Asia.
Collapse
Affiliation(s)
- Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, Tsukuba, Japan
| |
Collapse
|
15
|
Xia H, Liu R, Zhao L, Sun X, Zheng Z, Atoni E, Hu X, Zhang B, Zhang G, Yuan Z. Characterization of Ebinur Lake Virus and Its Human Seroprevalence at the China-Kazakhstan Border. Front Microbiol 2020; 10:3111. [PMID: 32082268 PMCID: PMC7002386 DOI: 10.3389/fmicb.2019.03111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, rapidly increasing trade and travel across the China–Kazakhstan border has increased the potential risk of the introduction and exportation of vectors and their related diseases. The Ebinur Lake Nature Reserve is located in Xinjiang Uygur Autonomous Region, near the China–Kazakhstan border, with a suitable ecosystem for mosquito breeding. In our previous work, a novel Orthobunyavirus species named Ebinur Lake virus (EBIV) was isolated in the reserve. To gain insights into the potential risk of EBIV in this region, we conducted a study that aimed to clearly outline EBIV’s biological characteristics and its human seroprevalence in this region. Phylogenetically, the analysis of all three segments of EBIV demonstrated that it belongs to the genus Orthobunyavirus, which is clustered in the Bunyamwera serogroup. EBIV replicated efficiently and caused cytopathic effects (CPEs) in vertebrate cells. The survival rates of the EBIV-challenged mice were 0 and 20% when inoculated with viral concentrations ≥104 or 102 plaque-forming units, respectively. For EBIV-infected mice, internal bleeding and pathological changes were observed. In addition, the overall immunoglobulin M (IgM) antibody [1:4 by immunofluorescence assay (IFA)], immunoglobulin G (IgG) antibody (1:10 by IFA), and neutralizing antibody [90% plaque reduction neutralization test (PRNT)] prevalence was 8.05, 12.3, and 0.95%, respectively, in the studied residents. In summary, EBIV is a new member of the Bunyamwera serogroup and is able to competently infect cells derived from mosquitoes, rodents, monkeys, or humans. Furthermore, EBIV caused severe disease and even death in challenged Kunming mice, and the antibodies against EBIV have been detected in local residents, indicating that the virus is a potential animal or human pathogen.
Collapse
Affiliation(s)
- Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ran Liu
- Illumina (China), Beijing, China
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Sun
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhong Zheng
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Guilin Zhang
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
16
|
Hameed M, Liu K, Anwar MN, Wahaab A, Li C, Di D, Wang X, Khan S, Xu J, Li B, Nawaz M, Shao D, Qiu Y, Wei J, Ma Z. A viral metagenomic analysis reveals rich viral abundance and diversity in mosquitoes from pig farms. Transbound Emerg Dis 2019; 67:328-343. [PMID: 31512812 DOI: 10.1111/tbed.13355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Mosquitoes harbour a diversity of viruses and are responsible for several mosquito-borne viral diseases of humans and animals, thereby leading to major public health concerns, and significant economic losses across the globe. Viral metagenomics offers a great opportunity for bulk analysis of viral genomes retrieved directly from environmental samples. In this study, we performed a viral metagenomic analysis of five pools of mosquitoes belonging to Aedes, Anopheles and Culex species, collected from different pig farms in the vicinity of Shanghai, China, to explore the viral community carried by mosquitoes. The resulting metagenomic data revealed that viral community in the mosquitoes was highly diverse and varied in abundance among pig farms, which comprised of more than 48 viral taxonomic families, specific to vertebrates, invertebrates, plants, fungi, bacteria and protozoa. In addition, a considerable number of viral reads were related to viruses that are not classified by host. The read sequences related to animal viruses included parvoviruses, anelloviruses, circoviruses, flavivirus, rhabdovirus and seadornaviruses, which might be taken up by mosquitoes from viremic animal hosts during blood feeding. Notably, sample G1 contained the most abundant sequence related to Banna virus, which is of public health interest because it causes encephalitis in humans. Furthermore, non-classified viruses also shared considerable virus sequences in all the samples, presumably belonging to unexplored virus category. Overall, the present study provides a comprehensive knowledge of diverse viral populations carried by mosquitoes at pig farms, which is a potential source of diseases for mammals including humans and animals. These viral metagenomic data are valuable for assessment of emerging and re-emerging viral epidemics.
Collapse
Affiliation(s)
- Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Chenxi Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jinpeng Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Mohsin Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| |
Collapse
|
17
|
Zhao L, Mwaliko C, Atoni E, Wang Y, Zhang Y, Zhan J, Hu X, Xia H, Yuan Z. Characterization of a Novel Tanay Virus Isolated From Anopheles sinensis Mosquitoes in Yunnan, China. Front Microbiol 2019; 10:1963. [PMID: 31507570 PMCID: PMC6714596 DOI: 10.3389/fmicb.2019.01963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Globally, mosquitoes are known to be competent vectors to various arboviruses that cause serious and debilitating diseases to humans and animals. Conversely, mosquitoes harbor a wide array of insect specific viruses (ISVs) that are generally neglected. Extensive characterization of these ISVs is important in understanding their persistence infection effect on host behavior and arbovirus transmission. Herein, we report first time isolation of Tanay virus (TANAV) isolate YN15_103_01 in Anopheles sinensis mosquitoes from Yunnan Province, China. Phylogenetically, the isolate’s nucleotide identity had more than 14.47% variance compared to previous TANAV isolates, and it clustered into an independent branch within the genus Sandewavirus in the newly proposed taxon Negevirus. TANAV growth and high titers was attained in Aag2 cells (107 PFU/mL) but with no CPE observed up to 7 days.p.i. compared to C6/36 cells that exhibited extensive CPE at 48 h.p.i. with titers of 107 PFU/mL. Contrarywise, the viral isolate did not replicate in vertebrate cell lines. Electron microscopy analyses showed that its final maturation process takes place in the cell cytoplasm. Notably, the predicted viral proteins were verified to be corresponding to the obtained SDS-PAGE protein bands. Our findings advance forth new and vital knowledge important in understanding insect specific viruses, especially TANAV.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunzhi Zhang
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Jianbo Zhan
- Division for Viral Disease with Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|