1
|
Yan YR, Sun YH. Genotypic diversity and immunological implications of porcine circovirus: Inspiration from PCV1 to PCV4. Microb Pathog 2024; 196:106997. [PMID: 39369754 DOI: 10.1016/j.micpath.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Porcine circovirus (PCV) is a group of DNA viruses that cause diseases in pigs, with multiple genotypes ranging from PCV1 to PCV4. PCV1 is generally considered non-pathogenic, while PCV2 can cause severe immune system damage, especially associated with porcine multisystemic wasting syndrome (PMWS). PCV2 has a genetic homology of about 68 % but differs from PCV1 in antigenicity and phenotype. PCV3 and PCV4 have lower genetic homology with PCV1 and PCV2, with limited research available on their pathogenicity. During virus infection, the host's innate immune system detects PCVs through pattern recognition receptors (PRRs) like TLRs and NLRs. PCV disrupts immune pathways, including interferon and NF-κB pathways, aiding viral replication and causing immunosuppression. This review systematically compares the characteristics and pathogenicity of different genotypes of PCV and their interactions with the host's immune system, aiming to better understand the mechanisms of PCV infection and provide a theoretical basis for prevention and treatment.
Collapse
Affiliation(s)
- You-Rong Yan
- Jiangsu Agri-animal Husbandry Vocational College, No. 8 Fenghuang East Road, Hailing District, Taizhou City, Jiangsu Province, 225300, China.
| | - Ying-Hui Sun
- Shanghai Academy of Agricultural Sciences, No.2901 Beidi Road, Minhang District, Shanghai, 201106, China
| |
Collapse
|
2
|
Ouyang Y, Nauwynck HJ. Molecular basis for the different PCV2 susceptibility of T-lymphoblasts in Landrace and Piétrain pigs. Vet Res 2024; 55:22. [PMID: 38374131 PMCID: PMC10875804 DOI: 10.1186/s13567-024-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Clinically, Landrace pigs are more susceptible to porcine circovirus-associated diseases (PCVADs) than Piétrain pigs. We previously found that porcine circovirus type 2 (PCV2) can infect T-lymphoblasts. The present study examined the replication kinetics of six PCV2 strains in the lymphoblasts of Landrace and Piétrain pigs. The results showed that T-lymphoblasts from Landrace pigs are much more susceptible to PCV2 infection than those from Piétrain pigs. In addition, PCV2 replication was strain-dependent. PCV2 binding to T-lymphoblasts was partially mediated by chondroitin sulfate (CS) and dermatan sulfate (DS). Phosphacan, an effective internalization mediator in monocytes that contains several CS chains, was also demonstrated to be involved in PCV2 internalization. Viral binding and internalization were not different between the two breeds, however, the subsequent step, the disassembly was. Although inhibition of serine proteases blocked PCV2 replication in both Landrace and Piétrain pigs, this only occurred at a neutral pH in Piétrain pigs, whereas this occurred also at a low pH in Landrace. This suggested that more proteases can cleave PCV2 in Landrace lymphoblasts than in Piétrain lymphoblasts, explaining the better replication. Through co-localization studies of viral particles with endo-lysosomal markers, and quantitative analysis of organelle sizes during viral internalization, it was observed that PCV2 may exhibit a higher propensity for viral escape from late endosomes in Landrace pigs (smaller) compared to Piétrain pigs. These results provide new understandings of the different PCV2 susceptibility in Landrace and Piétrain pigs.
Collapse
Affiliation(s)
- Yueling Ouyang
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
4
|
Chen XM, Zhao YY, Liu XC, Han YY, Zhang YH, Hou CY, Zheng LL, Ma SJ, Chen HY. Molecular detection and genetic characteristics of a novel porcine circovirus (porcine circovirus 4) and porcine reproductive and respiratory syndrome virus in Shaanxi and Henan Provinces of China. Comp Immunol Microbiol Infect Dis 2023; 98:102009. [PMID: 37390696 DOI: 10.1016/j.cimid.2023.102009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Porcine circovirus 4 (PCV4) is a recently discovered circovirus that was first reported in 2019 in several pigs with severe clinical disease in Hunan province of China, and also identified in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV). To further investigate the epidemic profile and genetic characteristics of the two viruses, 150 clinical samples were collected from 9 swine farms in Shaanxi and Henan provinces of China, and a SYBR Green I-based duplex quantitative real-time polymerase chain reaction (qPCR) was developed for detecting PCV4 and PRRSV simultaneously. The results showed the limits of detection were 41.1 copies/μL and 81.5 copies/μL for PCV4 and PRRSV, respectively. The detection rates of PCV4 and PRRSV were 8.00% (12/150) and 12.00% (18/150) respectively, and a case of co-infection with PCV4 and PRRSV was found in the lung tissue of a suckling pig with respiratory symptom. Subsequently, the complete genomic sequences of five PCV4 strains were obtained, of which one PCV4 strain (SX-ZX) was from Shaanxi province, and these strains were 1770 nucleotides in length and had 97.7%-99.4% genomic identity with 59 PCV4 reference strains. The genome characteristic of the SX-ZX strain was evaluated from three aspects, a "stem-loop" structure, ORF1 and ORF2. As essential elements for the replication, the 17-bp iterative sequence was predicted as the stem structure, in which three non-tandem hexamers were found at downstream with H1/H2 (12-CGGCACACTTCGGCAC-27) as the minimal binding site. Three of the five PCV4 strains were clustered into PCV4b, which was composed of Suidae, fox, dairy cow, dog and raccoon dog. Phylogenetic analysis revealed that seven PRRSV strains from the present study were clustered into the PRRSV-2 genotype. Collectively, these data extend our understanding of the genome characteristic of PCV4 as well as the molecular epidemiology and the genetic profile of PCV4 and PRRSV.
Collapse
Affiliation(s)
- Xi-Meng Chen
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - You-Yi Zhao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Xiao-Chen Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Ying-Ying Han
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Yuan-Hang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Cheng-Yao Hou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Lan-Lan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Shi-Jie Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China.
| | - Hong-Ying Chen
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China.
| |
Collapse
|
5
|
Li HX, Chen XM, Zhao YY, Zhang HL, Zheng LL, Wang LQ, Ma SJ, Chen HY. Simultaneous detection and phylogenetic analysis of porcine epidemic diarrhea virus and porcine circovirus 4 in Henan province, China. Arch Virol 2023; 168:161. [PMID: 37179263 DOI: 10.1007/s00705-023-05791-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Porcine circovirus 4 (PCV4) is a recently discovered circovirus that was first reported in 2019 in several pigs in Hunan province of China and has also been identified in pigs infected with porcine epidemic diarrhea virus (PEDV). To further investigate the coinfection and genetic diversity of these two viruses, 65 clinical samples (including feces and intestinal tissues) were collected from diseased piglets on 19 large-scale pig farms in Henan province of China, and a duplex SYBR Green I-based quantitative real-time polymerase chain reaction (qPCR) assay was developed for detecting PEDV and PCV4 simultaneously. The results showed that the limit of detection was 55.2 copies/μL and 44.1 copies/μL for PEDV and PCV4, respectively. The detection rate for PEDV and PCV4 was 40% (26/65) and 38% (25/65), respectively, and the coinfection rate for the two viruses was 34% (22/65). Subsequently, the full-length spike (S) gene of eight PEDV strains and a portion of the genome containing the capsid (Cap) gene of three PCV4 strains were sequenced and analyzed. Phylogenetic analysis showed that all of the PEDV strains from the present study clustered in the G2a subgroup and were closely related to most of the PEDV reference strains from China from 2011 to 2021, but they differed genetically from a vaccine strain (CV777), a Korean strain (virulent DR1), and two Chinese strains (SD-M and LZC). It is noteworthy that two PEDV strains (HEXX-24 and HNXX-24XIA) were identified in one sample, and the HNXX-24XIA strain had a large deletion at amino acids 31-229 of the S protein. Moreover, a recombination event was observed in strain HEXX-24. Phylogenetic analysis based on the amino acid sequence of the PCV4 Cap protein revealed that PCV4 strains were divided into three genotypes: PCV4a1, PCV4a2, and PCV4b. Three strains in the present study belonged to PCV4a1, and they had a high degree of sequence similarity (>98% identity) to other PCV4 reference strains. This study not only provides technical support for field investigation of PEDV and PCV4 coinfection but also provides data for their prevention and control.
Collapse
Affiliation(s)
- Hong-Xuan Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xi-Meng Chen
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan, People's Republic of China
| | - You-Yi Zhao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan, People's Republic of China
| | - Hong-Lei Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lan-Lan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lin-Qing Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan, People's Republic of China
- Department of Life Science, Zhengzhou Normal University, Zhengzhou, 450044, Henan, People's Republic of China
| | - Shi-Jie Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan, People's Republic of China.
| | - Hong-Ying Chen
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
6
|
Ouyang Y, Nauwynck HJ. PCV2 Uptake by Porcine Monocytes Is Strain-Dependent and Is Associated with Amino Acid Characteristics on the Capsid Surface. Microbiol Spectr 2023; 11:e0380522. [PMID: 36719220 PMCID: PMC10100887 DOI: 10.1128/spectrum.03805-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is associated with several economically important diseases that are described as PCV2-associated diseases (PCVADs). PCV2 is replicating in lymphoblasts, and PCV2 particles are taken up by monocytes without effective replication or complete degradation. Glycosaminoglycans (GAGs) have been demonstrated to be important receptors for PCV2 binding and entry in T-lymphocytes and continuous cell lines. The objective of this study was to determine whether differences exist in viral uptake and outcome among six PCV2 strains from different disease outbreaks in primary porcine monocytes: Stoon-1010 (PCV2a; PMWS), 1121 (PCV2a; abortion), 1147 (PCV2b; PDNS), 09V448 (PCV2d-1; PCVAD with high viral load in lymphoid tissues [PCVADhigh]), DE222-13 (PCV2d-2; PCVADhigh), and 19V245 (PCV2d-2; PCVADhigh). The uptake of PCV2 in peripheral blood monocytes was different among the PCV2 strains. A large number of PCV2 particles were found in the monocytes for Stoon-1010, DE222-13, and 19V245, while a low number was found for 1121, 1147, and 09V448. Competition with, and removal of GAGs on the cell surface, demonstrated an important role of chondroitin sulfate (CS) and dermatan sulfate (DS) in PCV2 entry into monocytes. The mapping of positively/negatively charged amino acids exposed on the surface of PCV2 capsids revealed that their number and distribution could have an impact on the binding of the capsids to GAGs, and the internalization into monocytes. Based on the distribution of positively charged amino acids on PCV2 capsids, phosphacan was hypothesized, and further demonstrated, as an effective candidate to mediate virus attachment to, and internalization in, monocytes. IMPORTANCE PCV2 is present on almost every pig farm in the world and is associated with a high number of diseases (PCV2-associated diseases [PCVADs]). It causes severe economic losses. Although vaccination is successfully applied in the field, there are still a lot of unanswered questions on the pathogenesis of PCV2 infections. This article reports on the uptake difference of various PCV2 strains by peripheral blood monocytes, and reveals the mechanism of the strong viral uptake ability of monocytes of Piétrain pigs. We further demonstrated that: (i) GAGs mediate the uptake of PCV2 particles by monocytes, (ii) positively charged three-wings-windmill-like amino acid patterns on the capsid outer surface are activating PCV2 uptake, and (iii) phosphacan is one of the potential candidates for PCV2 internalization. These results provide new insights into the mechanisms involved in PCVAD and contribute to a better understanding of PCV2 evolution. This may lead to the development of resistant pigs.
Collapse
Affiliation(s)
- Yueling Ouyang
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Xu T, Chen L, Huang BZ, Zhu L, Sun XG, Lai SY, Ai YR, Zhou YC, Xu ZW. The first dog-origin porcine circovirus type 4 complete genomic sequence have high homology with that of pig-derived strains. Front Microbiol 2023; 14:1121177. [PMID: 36910182 PMCID: PMC10002969 DOI: 10.3389/fmicb.2023.1121177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Porcine circovirus 4 (PCV4) was discovered in 2019 and then proved to be pathogenic to piglets. Nevertheless, few studies were currently available about PCV4 infection in species other than pigs and there is no information about the prevalence of PCV4 in dogs. Methods: To fill this gap, 264 dog samples were collected from animal hospitals in the Southwest of China from 2021 to 2022 and screened for PCV4. Moreover, the complete genome of one PCV4 strain (SCABTC-Dog2022) were obtained successfully and shared a high identity (97.9-99.0%) with other PCV4 strains derived from pigs, dairy cows, raccoon dogs and foxes. The SCABTC-Dog2022 were analyzed together with 51 reference sequences. Results and Discussion: The detected results showed a low percentage of PCV-4 DNA (1.14%, 3/264), indicating that PCV4 could be identified in dogs in southwest China. Phylogenetic tree showed that SCABTC-Dog2022 strain derived from dog were clustered in a closed relative and geographically coherent branch with other PCV4 strains collected from four provinces (Sichuan, Fujian, Hunan and Inner Mongolia) of China. To our knowledge, it is the first detection of PCV4 in dogs globally. The association between PCV4 status and clinical syndromes in dogs deserves additional investigations.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lan Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bing-Zhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xian-Gang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Cheng Zhou
- Key Laboratory of Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Yu C, Wei Y, Zhang H, Liu J, Feng L, Liu C, Huang L. Rapid detection of porcine circovirus type 2 by a red latex microsphere immunochromatographic strip. Appl Microbiol Biotechnol 2022; 106:5757-5769. [PMID: 35945364 PMCID: PMC9363268 DOI: 10.1007/s00253-022-12074-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022]
Abstract
To establish a rapid and specific antigen detection method for porcine circovirus type 2 (PCV2), monoclonal antibodies (mAbs) were produced against the PCV2 epidemic strains and a red latex microsphere immunochromatographic strip was established. A total of eight anti-PCV2b and four anti-PCV2d mAbs were produced, and seven mAbs were confirmed to react with PCV2a, PCV2b, and PCV2d strains using an immunoperoxidase monolayer assay. The results of micro-neutralization tests showed that the mAbs 2C8, 9H4, 10G7, 7B9, and 7C7 had good neutralizing activity, whereas the neutralizing activity of the mAbs 4B3, 4C9, 6H9, and 7E2 was lower than 50%. Three mAbs, 4B3, 7C7, and 9H4, and PCV2 pAb were selected for the establishment of a red latex microsphere immunochromatographic strip, and the combination of mAb 7C7 labeled with red latex microspheres and mAb 9H4 exhibited the greatest detection ability. The immunochromatographic strip had minimum detection limits of 102.5 TCID50/0.1 ml, 100.7 TCID50/0.1 ml, and 101.5 TCID50/0.1 ml for PCV2a/CL, PCV2b/MDJ, and PCV2d/LNHC, respectively. Furthermore, no cross-reactivity was found for African swine fever virus, classical swine fever virus, porcine respiratory and reproductive syndrome virus, porcine parvovirus, porcine pseudorabies virus, porcine circovirus type 1, transmissible gastroenteritis virus, porcine epidemic diarrhea virus, porcine rotavirus, or porcine deltacoronavirus using the immunochromatographic strip. Using PCR as a reference standard, the detection sensitivity, specificity, and overall coincidence rate of the immunochromatographic strip were 81.13%, 100%, and 90.00%. Additionally, the detection ability of the immunochromatographic strip was correlated with that of virus titration. The immunochromatographic strip was used to detect 183 clinical disease samples, and the average positive detection rate was 22.95%. In summary, this method has good sensitivity and specificity and is simple, convenient, and quick to operate. It has high application value for on-site diagnosis of PCV2 and virus quantification. KEY POINTS: • A red latex microsphere immunochromatographic strip for PCV2 detection was developed. • The method was not only simple to operate, but also takes less time. • The method had good sensitivity and specificity.
Collapse
Affiliation(s)
- Chong Yu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China
| | - Yanwu Wei
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China
| | - Hao Zhang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China
| | - Jianhang Liu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China
| | - Li Feng
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China.
| | - Changming Liu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China.
| | - Liping Huang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|
9
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
10
|
Höltig D, Reiner G. [Opportunities and risks of the use of genetic resistances to infectious diseases in pigs - an overview]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50:46-58. [PMID: 35235982 DOI: 10.1055/a-1751-3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Demands for health, performance and welfare in pigs, as well as the desire for consumer protection and reduced antibiotic use, require optimal measures in advance of disease development. This includes, in principle, the use of genetically more resistant lines and breeding animals, whose existence has been proven for a wide range of pathogen-host interactions. In addition, attempts are being made to identify the gene variants responsible for disease resistance in order to force the selection of suitable populations, also using modern biotechnical technics. The present work is intended to provide an overview of the research status achieved in this context and to highlight opportunities and risks for the future.The evaluation of the international literature shows that genetic disease resistance exist in many areas of swine diseases. However, polygenic inheritance, lack of animal models and the influence of environmental factors during evaluation render their implementation in practical breeding programs demanding. This is where modern molecular genetic methods, such as Gene Editing, come into play. Both approaches possess their pros and cons, which are discussed in this paper. The most important infectious diseases in pigs, including general diseases and epizootics, diseases of the respiratory and digestive tract and diseases of the immune system are taken into account.
Collapse
Affiliation(s)
- Doris Höltig
- Klinik für kleine Klauentiere, forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Gerald Reiner
- Klinikum Veterinärmedizin, Justus-Liebig-Universität
| |
Collapse
|
11
|
Xu T, Hou CY, Zhang YH, Li HX, Chen XM, Pan JJ, Chen HY. Simultaneous detection and genetic characterization of porcine circovirus 2 and 4 in Henan province of China. Gene 2022; 808:145991. [PMID: 34626723 DOI: 10.1016/j.gene.2021.145991] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Porcine circovirus 4 (PCV4) was identified as a novel porcine circovirus in China in 2019. To investigate the prevalence and genetic characteristics of PCV2 and PCV4, 133 clinical samples (103 tissue samples and 30 serum samples) were collected from 30 different pig farms in Henan province of China, and a SYBR Green I-based duplex quantitative real-time polymerase chain reaction assay was established to detect PCV2 and PCV4 genomes simultaneously. The complete genome sequences of 20 PCV2 and 6 PCV4 strains from 19 and 6 clinical samples respectively were sequenced and analyzed. The results showed the detection limits of this assay were 80.2 copies/μL for PCV2 and 58.6 copies/μL for PCV4. The detection results of clinical samples revealed the PCV2 positive rate was 63.16% (84/133), the PCV4 positive rate was 33.33% (45/133), and the PCV2 and PCV4 co-infection positive rate was 21.05% (28/133). Among 20 PCV2 strains, 6 belonged to PCV2a, 6 belonged to PCV2b and 8 belonged to PCV2d. Co-infection with JZ1 (PCV2b) and JZ2 (PCV2d) strains was identified in one sample (JZ-1). Eleven putative recombination events were found through the recombination analysis, suggesting that the new PCV2 variant strains had circulated in Henan province, which contributes to our understanding of evolutionary characteristics of PCV2 in China. The possible genotypes of PCV4 strains were determined based on genomic sequences of 6 PCV4 strains in this study and 29 PCV4 reference strains available at GenBank. According to three different phylogenetic trees (ORF1, ORF2 and complete genome), all 35 PCV4 strains were clustered into two major genotypes (PCV4a and PCV4b), and 6 PCV4 strains in this study belonged to PCV4a. Additionally, the functional regions of PCV4 strains were predicted by comparison with other circoviruses, which are conducive to the further study of the biological functions of PCV4 genome.
Collapse
Affiliation(s)
- Tong Xu
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan province, People's Republic of China
| | - Cheng-Yao Hou
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan province, People's Republic of China
| | - Yuan-Hang Zhang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan province, People's Republic of China
| | - Hong-Xuan Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan province, People's Republic of China
| | - Xi-Meng Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan province, People's Republic of China
| | - Jia-Jia Pan
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan province, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, Henan province, People's Republic of China.
| |
Collapse
|
12
|
Nguyen VG, Do HQ, Huynh TML, Park YH, Park BK, Chung HC. Molecular-based detection, genetic characterization and phylogenetic analysis of porcine circovirus 4 from Korean domestic swine farms. Transbound Emerg Dis 2021; 69:538-548. [PMID: 33529468 DOI: 10.1111/tbed.14017] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/18/2023]
Abstract
Porcine circovirus 4 (PCV4), a novel and unclassified member of the genus Circovirus, was first reported in China in 2019. Aiming to provide more evidence about the active circulation of PCV4, this study screened 335 pooled internal organs and detected the virus (i) at a rate of 3.28%, (ii) from both clinically healthy and clinically sick pigs of various age groups, and (iii) in six out of nine provinces of Korea. The complete genomic sequence of the Korean PCV4 strain (E115) was 1,770 nucleotides in length and had 98.5%-98.9% identity to three PCV4 strains currently available at GenBank. Utilizing a set of bioinformatic programs, it was revealed that the Korean PCV4 strain contained several genomic features of (i) a palindrome stem-loop structure with a conserved nonanucleotide, (ii) packed overlapping ORFs oriented in different directions and (iii) two intergenic regions in between genes encoding the putative replication-associated protein (Rep) and capsid (Cap) proteins. This study also predicted the presence of essential elements for the replication of circoviruses in all PCV4 strains, for example the origin of DNA replication, endonuclease and helicase domains of Rep, and the nuclear localization signal on the putative Cap protein. Finally, based on the phylogeny inferred from sequences of the putative Rep protein, this study further clarified the genetic relationships between PCV4 and other CRESS DNA viruses in general and circoviruses in particular.
Collapse
Affiliation(s)
- Van-Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hai-Quynh Do
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.,Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Thi-My-Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Yong-Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Bong-Kyun Park
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hee-Chun Chung
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
13
|
A Heterologous Viral Protein Scaffold for Chimeric Antigen Design: An Example PCV2 Virus Vaccine Candidate. Viruses 2020; 12:v12040385. [PMID: 32244384 PMCID: PMC7232224 DOI: 10.3390/v12040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 12/05/2022] Open
Abstract
Recombinant vaccines have low-cost manufacturing, regulatory requirements, and reduced side effects compared to attenuated or inactivated vaccines. In the porcine industry, post-weaning multisystemic disease syndrome generates economic losses, characterized by progressive weight loss and weakness in piglets, and it is caused by porcine circovirus type 2 (PCV2). We designed a chimeric antigen (Qm1) to assemble the main exposed epitopes of the Cap-PCV2 protein on the capsid protein of the tobacco necrosis virus (TNV). This design was based on the Cap-N-terminal of an isolated PCV2 virus obtained in Chile. The virus was characterized, and the sequence was clustered within the PCV2 genotype b clade. This chimeric protein was expressed as inclusion bodies in both monomeric and multimeric forms, suggesting a high-molecular-weight aggregate formation. Pigs immunized with Qm1 elicited a strong and specific antibody response, which reduced the viral loads after the PCV2 challenge. In conclusion, the implemented design allowed for the generation of an effective vaccine candidate. Our proposal could be used to express the domains or fragments of antigenic proteins, whose structural complexity does not allow for low-cost production in Escherichia coli. Hence, other antigen domains could be integrated into the TNV backbone for suitable antigenicity and immunogenicity. This work represents new biotechnological strategies, with a reduction in the costs associated with vaccine development.
Collapse
|
14
|
Conformational Changes and Nuclear Entry of Porcine Circovirus without Disassembly. J Virol 2019; 93:JVI.00824-19. [PMID: 31341057 DOI: 10.1128/jvi.00824-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
A relatively stable and flexible capsid is critical to the viral life cycle. However, the capsid dynamics and cytosol trafficking of porcine circovirus type 2 (PCV2) during its infectious cycle are poorly understood. Here, we report the structural stability and conformation flexibility of PCV2 virions by genome labeling and the use of three monoclonal antibodies (MAbs) against the native capsid of PCV2. Genome labeling showed that the infectivity of the PCV2 virion was not affected by conjugation with deoxy-5-ethynylcytidine (EdC). Heat stability experiments indicated that PCV2 capsids started to disassemble at 65°C, causing binding incompetence for all antibodies, and the viral genome was released without capsid disassembly upon heating at 60°C. Antibody binding experiments with PCV2 showed that residues 186 to 192 were concealed in the early endosomes of epithelial PK-15 and monocytic 3D4/31 cells with or without chloroquine treatment and then exposed in PK-15 cytosol and the 3D4/31 nucleus. Viral propagation and localization experiments showed that PCV2 replication and cytosol trafficking were not significantly affected by microtubule depolymerization in monocytic 3D4/31 cells treated with nocodazole. These findings demonstrated that nuclear targeting of viral capsids involved conformational changes, the PCV2 genome was released from the assembled capsid, and the transit of PCV2 particles was independent of microtubules in 3D4/31 cells.IMPORTANCE Circovirus is the smallest virus known to replicate autonomously. Knowledge of viral genome release may provide understanding of viral replication and a method to artificially inactivate viral particles. Currently, little is known about the release model of porcine circovirus type 2 (PCV2). Here, we report the release of the PCV2 genome from assembled capsid and the intracellular trafficking of infectious PCV2 by alterations in the capsid conformation. Knowledge of PCV2 capsid stability and dynamics is essential to understanding its infectious cycle and lays the foundation for discovering powerful targets for therapeutic and prophylactic intervention.
Collapse
|
15
|
Strain-Dependent Porcine Circovirus Type 2 (PCV2) Entry and Replication in T-Lymphoblasts. Viruses 2019; 11:v11090813. [PMID: 31480752 PMCID: PMC6783876 DOI: 10.3390/v11090813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/25/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the etiological agent of PCV2-associated diseases (PCVAD). PCV2 targets lymphoblasts, and pigs suffering from PCVAD display lymphocyte depletion in lymphoid tissues. PCV2 infection of lymphoblasts has not been studied. Here, the replication cycle of PCV2 (abortion strain 1121 and PMWS strain Stoon1010) in T-lymphoblasts was examined. The expression of Rep and Cap were found for both viral strains, while progeny virus was detected for Stoon1010 but not for 1121. PCV2 attached to 11–26% (1121-Stoon1010) of the T-lymphoblasts while 2.6–12.7% of cells showed virus internalization. Chondroitin sulfate (CS) was present on 25% of T-lymphoblasts, and colocalized with PCV2 on 31–32% of the PCV2+ cells. Enzymatic removal of CS reduced PCV2 infection. PCV2 infection was decreased by chlorpromazine, cytochalasin D and Clostridium difficile toxin B for both viral strains and by amiloride for 1121 but not for Stoon1010. Inhibiting either endosome acidification or serine proteases strongly reduced PCV2 infection. Three-dimensional analysis of Cap structure demonstrated a better Cap-nucleic acid affinity for Stoon1010 than for 1121. Taken together, PCV2 binds to T-lymphoblasts partially via CS, enters via clathrin-mediated endocytosis, and disassembles under functions of a pH-drop and serine proteases. Strain Stoon1010 displayed an enhanced viral binding, a specific receptor-mediated endocytosis, an increased Cap-nucleic acid affinity, and a more productive infection in T-lymphoblasts than 1121 did, indicating an evolution from 1121 to Stoon1010.
Collapse
|
16
|
Wei R, Xie J, Theuns S, Nauwynck HJ. Changes on the viral capsid surface during the evolution of porcine circovirus type 2 (PCV2) from 2009 till 2018 may lead to a better receptor binding. Virus Evol 2019; 5:vez026. [PMID: 31392030 PMCID: PMC6676070 DOI: 10.1093/ve/vez026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated diseases (PCVAD). Three major PCV2 genotypes (PCV2a, PCV2b, and PCV2d) have been identified globally. Despite their worldwide distribution, the prevalence and genetic evolution of PCV2 in Belgium has not previously been determined. In this study, 319 samples from animals suffering from diseases likely to be associated with PCV2 were collected from 2009 to 2018 and analysed by virus titration. The overall prevalence of PCV2 in PCVAD-suspected cases was 15.7 per cent (50/319). The phylogenetic analysis demonstrated that at least three genotypes (PCV2a, PCV2b, and PCV2d) circulated in Belgium from 2009 till 2018, and that PCV2 evolved from PCV2a to PCV2b and from PCV2d-1 to PCV2d-2. Sequence comparison among the forty-three PCV2 isolates showed that they had 89.7–100 per cent nucleotide-sequence and 88.5–100 per cent amino-acid-sequence identities. Three amino acid sites were under positive selection. Three-dimensional analysis of genotype-specific amino acids revealed that most of the mutations were on the outside of the cap protein with a few conserved mutations present on the inner side. Mutations toward more basic amino acids were found on the upper and tail parts of two connecting capsid proteins which form one big contact region, most probably involved in receptor binding. The lower part was relatively conserved. This polarity change together with the formation of an extruding part drive the virus to a more efficient GAG receptor binding. Taken together, these results showed a genotype shift from PCV2a to PCV2b and later on from PCV2d-1 to PCV2d-2, and a PCV2 evolution toward a better receptor binding capacity.
Collapse
Affiliation(s)
- Ruifang Wei
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Jiexiong Xie
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| |
Collapse
|