1
|
Pourcel C, Essoh C, Ouldali M, Tavares P. Acinetobacter baumannii satellite phage Aci01-2-Phanie depends on a helper myophage for its multiplication. J Virol 2024; 98:e0066724. [PMID: 38829140 PMCID: PMC11264900 DOI: 10.1128/jvi.00667-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
We report the discovery of a satellite-helper phage system with a novel type of dependence on a tail donor. The Acinetobacter baumannii satellite podovirus Aci01-2-Phanie (short name Phanie) uses a phage phi29-like DNA replication and packaging mode. Its linear 11,885 bp dsDNA genome bears 171 bp inverted terminal repeats (ITR). Phanie is related to phage DU-PP-III from Pectobacterium and to members of the Astrithrvirus from Salmonella enterica. Together, they form a new clade of phages with 27% to 30% identity over the whole genome. Detailed 3D protein structure prediction and mass spectrometry analyses demonstrate that Phanie encodes its capsid structural genes and genes necessary to form a short tail. However, our study reveals that Phanie virions are non-infectious unless they associate with the contractile tail of an unrelated phage, Aci01-1, to produce chimeric myoviruses. Following the coinfection of Phanie with myovirus Aci01-1, hybrid viral particles composed of Phanie capsids and Aci01-1 contractile tails are assembled together with Phanie and Aci01-1 particles.IMPORTANCEThere are few reported cases of satellite-helper phage interactions but many more may be yet undiscovered. Here we describe a new mode of satellite phage dependence on a helper phage. Phanie, like phage phi29, replicates its linear dsDNA by a protein primed-mechanism and protects it inside podovirus-like particles. However, these particles are defective, requiring the acquisition of the tail from a myovirus helper for production of infectious virions. The formation of chimeras between a phi29-like podovirus and a helper contractile tail reveals an unexpected association between very different bacterial viruses.
Collapse
Affiliation(s)
- Christine Pourcel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christiane Essoh
- Department of Biochemistry-Genetic, School of Biological Sciences, Université Peleforo Gon Coulibaly, Korhogo, Côte d'Ivoire
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulo Tavares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
2
|
Li Y, Huo Y, Liang L, Li D, Zhang Z, Yang H. Bacillus phage phi18-2 is a novel temperate virus with an unintegrated genome present in the cytoplasm of lysogenic cells as a linear phage-plasmid. Arch Virol 2024; 169:81. [PMID: 38519716 DOI: 10.1007/s00705-024-06014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024]
Abstract
Bacillus subtilis is a Gram-positive bacterium that is widely used in fermentation and in the pharmaceutical industry. Phage contamination occasionally occurs in various fermentation processes and causes significant economic loss. Here, we report the isolation and characterization of a temperate B. subtilis phage, termed phi18-2, from spore powder manufactured in a fermentation plant. Transmission electron microscopy showed that phi18-2 has a symmetrical polyhedral head and a long noncontractile tail. Receptor analysis showed that phi18-2 recognizes wall teichoic acid (WTA) for infection. The phage virions have a linear double-stranded DNA genome of 64,467 bp with identical direct repeat sequences of 309 bp at each end of the genome. In lysogenic cells, the phage genome was found to be present in the cytoplasm without integration into the host cell chromosome, and possibly as a linear phage-plasmid with unmodified ends. Our data may provide some insight into the molecular basis of the unique lysogenic cycle of phage phi18-2.
Collapse
Affiliation(s)
- Yutong Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yansheng Huo
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Li Liang
- Shandong Vland Biotech Co., Ltd., Shandong, 251700, China
| | - Donghang Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhiqiang Zhang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hongjiang Yang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
3
|
Alcorlo M, Luque-Ortega JR, Gago F, Ortega A, Castellanos M, Chacón P, de Vega M, Blanco L, Hermoso J, Serrano M, Rivas G, Hermoso J. Flexible structural arrangement and DNA-binding properties of protein p6 from Bacillus subtillis phage φ29. Nucleic Acids Res 2024; 52:2045-2065. [PMID: 38281216 PMCID: PMC10899789 DOI: 10.1093/nar/gkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
The genome-organizing protein p6 of Bacillus subtilis bacteriophage φ29 plays an essential role in viral development by activating the initiation of DNA replication and participating in the early-to-late transcriptional switch. These activities require the formation of a nucleoprotein complex in which the DNA adopts a right-handed superhelix wrapping around a multimeric p6 scaffold, restraining positive supercoiling and compacting the viral genome. Due to the absence of homologous structures, prior attempts to unveil p6's structural architecture failed. Here, we employed AlphaFold2 to engineer rational p6 constructs yielding crystals for three-dimensional structure determination. Our findings reveal a novel fold adopted by p6 that sheds light on its self-association mechanism and its interaction with DNA. By means of protein-DNA docking and molecular dynamic simulations, we have generated a comprehensive structural model for the nucleoprotein complex that consistently aligns with its established biochemical and thermodynamic parameters. Besides, through analytical ultracentrifugation, we have confirmed the hydrodynamic properties of the nucleocomplex, further validating in solution our proposed model. Importantly, the disclosed structure not only provides a highly accurate explanation for previously experimental data accumulated over decades, but also enhances our holistic understanding of the structural and functional attributes of protein p6 during φ29 infection.
Collapse
Affiliation(s)
- Martín Alcorlo
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas “Margarita Salas”, CSIC, 28040Madrid, Spain
| | - Federico Gago
- Departamento de Farmacología and CSIC-IQM Associate Unit, Universidad de Alcalá, Alcalá de Henares, 28871Madrid, Spain
| | - Alvaro Ortega
- Department of Biochemistry and Molecular Biology ‘B’ and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence ‘Campus Mare Nostrum, Murcia, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Nanotechnology for Health-Care, 28049 Madrid, Spain
| | - Pablo Chacón
- Department of Biological Physical-Chemistry, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006Madrid, Spain
| | - Miguel de Vega
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - Luis Blanco
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - José M Hermoso
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | - Germán Rivas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas “Margarita Salas”, CSIC, 28040Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
| |
Collapse
|
4
|
Rabaan AA, Al Fares MA, Almaghaslah M, Alpakistany T, Al Kaabi NA, Alshamrani SA, Alshehri AA, Almazni IA, Saif A, Hakami AR, Khamis F, Alfaresi M, Alsalem Z, Alsoliabi ZA, Al Amri KAS, Hassoueh AK, Mohapatra RK, Arteaga-Livias K, Alissa M. Application of CRISPR-Cas System to Mitigate Superbug Infections. Microorganisms 2023; 11:2404. [PMID: 37894063 PMCID: PMC10609045 DOI: 10.3390/microorganisms11102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Manar Almaghaslah
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Tariq Alpakistany
- Bacteriology Department, Public Health Laboratory, Taif 26521, Saudi Arabia
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62223, Saudi Arabia
| | - Abdulrahim R. Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62223, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Zainab Alsalem
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | | | - Amal K. Hassoueh
- Pharmacy Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| | - Kovy Arteaga-Livias
- Escuela de Medicina-Filial Ica, Universidad Privada San Juan Bautista, Ica 11000, Peru
- Escuela de Medicina, Universidad Nacional Hermilio Valdizán, Huanuco 10000, Peru
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
5
|
Muselmani W, Kashif-Khan N, Bagnéris C, Santangelo R, Williams MA, Savva R. A Multimodal Approach towards Genomic Identification of Protein Inhibitors of Uracil-DNA Glycosylase. Viruses 2023; 15:1348. [PMID: 37376646 DOI: 10.3390/v15061348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
DNA-mimicking proteins encoded by viruses can modulate processes such as innate cellular immunity. An example is Ung-family uracil-DNA glycosylase inhibition, which prevents Ung-mediated degradation via the stoichiometric protein blockade of the Ung DNA-binding cleft. This is significant where uracil-DNA is a key determinant in the replication and distribution of virus genomes. Unrelated protein folds support a common physicochemical spatial strategy for Ung inhibition, characterised by pronounced sequence plasticity within the diverse fold families. That, and the fact that relatively few template sequences are biochemically verified to encode Ung inhibitor proteins, presents a barrier to the straightforward identification of Ung inhibitors in genomic sequences. In this study, distant homologs of known Ung inhibitors were characterised via structural biology and structure prediction methods. A recombinant cellular survival assay and in vitro biochemical assay were used to screen distant variants and mutants to further explore tolerated sequence plasticity in motifs supporting Ung inhibition. The resulting validated sequence repertoire defines an expanded set of heuristic sequence and biophysical signatures shared by known Ung inhibitor proteins. A computational search of genome database sequences and the results of recombinant tests of selected output sequences obtained are presented here.
Collapse
Affiliation(s)
- Wael Muselmani
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Naail Kashif-Khan
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Claire Bagnéris
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Rosalia Santangelo
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Mark A Williams
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Renos Savva
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
6
|
Evidence of a Set of Core-Function Genes in 16 Bacillus Podoviral Genomes with Considerable Genomic Diversity. Viruses 2023; 15:v15020276. [PMID: 36851489 PMCID: PMC9965433 DOI: 10.3390/v15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Bacteriophage genomes represent an enormous level of genetic diversity and provide considerable potential to acquire new insights about viral genome evolution. In this study, the genome sequences of sixteen Bacillus-infecting bacteriophages were explored through comparative genomics approaches to reveal shared and unique characteristics. These bacteriophages are in the Salasmaviridae family with small (18,548-27,206 bp) double-stranded DNA genomes encoding 25-46 predicted open reading frames. We observe extensive nucleotide and amino acid sequence divergence among a set of core-function genes that present clear synteny. We identify two examples of sequence directed recombination within essential genes, as well as explore the expansion of gene content in these genomes through the introduction of novel open reading frames. Together, these findings highlight the complex evolutionary relationships of phage genomes that include old, common origins as well as new components introduced through mosaicism.
Collapse
|
7
|
Friedrich I, Neubauer H, Kuritsyn A, Bodenberger B, Tskhay F, Hartmann S, Poehlein A, Bömeke M, Hoppert M, Schneider D, Hertel R, Daniel R. Brevundimonas and Serratia as host systems for assessing associated environmental viromes and phage diversity by complementary approaches. Front Microbiol 2023; 14:1095850. [PMID: 37025643 PMCID: PMC10070969 DOI: 10.3389/fmicb.2023.1095850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Focusing on visible plaques for phage isolation leaves the question if we miss the diversity of non-plaque forming phages. We addressed this question through direct plaque-based isolation by employing the new hosts Brevundimonas pondensis LVF1 and Serratia marcescens LVF3 dsDNA, ssDNA, dsRNA, and ssRNA host-associated metavirome analysis. Of the 25 distinctive dsDNA phage isolates, 14 were associated with Brevundimonas and 11 with Serratia. TEM analysis revealed that 6 were myoviruses, 18 siphoviruses and 1 podovirus, while phages infecting Brevundimonas belonged all to siphoviruses. The associated viromes suggested a higher phage diversity in summer than in winter, and dsDNA phages were the dominant group. Isolation of vB_SmaP-Kaonashi was possible after investigating the viromes associated with Serratia, demonstrating the great potential of accompanying host-associated metavirome analysis. The ssDNA virome analysis showed that the B. pondensis LVF1 host is associated with Microviridae and Inoviridae phages, although none of them were isolated. The results demonstrated that the classical isolation technique is not exhausted, leading to the isolation of new dsDNA phages. It can be further improved by combination with metavirome techniques, which revealed further diversity.
Collapse
Affiliation(s)
- Ines Friedrich
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Hannes Neubauer
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Alisa Kuritsyn
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Bernhard Bodenberger
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Faina Tskhay
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Sara Hartmann
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Mechthild Bömeke
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Michael Hoppert
- General Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Robert Hertel
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- FG Synthetic Microbiology, Institute of Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- *Correspondence: Rolf Daniel,
| |
Collapse
|
8
|
Kohm K, Lutz VT, Friedrich I, Hertel R. CRISPR-Cas9 Shaped Viral Metagenomes Associated with Bacillus subtilis. Methods Mol Biol 2023; 2555:205-212. [PMID: 36306089 DOI: 10.1007/978-1-0716-2795-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phages are viruses of bacteria and have been known for over a century. They do not have a metabolism or protein synthesis machinery and rely on host cells for replication. The model organism Bacillus subtilis has served as a host strain for decades and enabled the isolation of many unique viral strains. However, many viral species representatives remained orphans as no, or only a few, related phages were ever re-isolated.The presented protocol describes how a CRISPR-Cas9 system with an artificial CRISPR-array can be set up and used to discriminate abundant and well-known B. subtilis phage from a host-based metagenome enrichment. The obtained viral suspension can be used for metagenome sequencing and isolating new viral strains.
Collapse
Affiliation(s)
- Katharina Kohm
- Institute of Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Veronika Theresa Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ines Friedrich
- Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany.
| | - Robert Hertel
- Institute of Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany.
- Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
A novel Bacillus cereus bacteriophage DLn1 and its endolysin as biocontrol agents against Bacillus cereus in milk. Int J Food Microbiol 2022; 369:109615. [DOI: 10.1016/j.ijfoodmicro.2022.109615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022]
|
10
|
Kohm K, Basu S, Nawaz MM, Hertel R. Chances and limitations when uncovering essential and non-essential genes of Bacillus subtilis phages with CRISPR-Cas9. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:934-944. [PMID: 34465000 DOI: 10.1111/1758-2229.13005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Virulent bacterial viruses, also known as phages or bacteriophages, are considered as a potential option to fight antibiotic-resistant bacteria. However, their biology is still poorly understood, and only a fraction of phage genes is assigned with a function. To enable the first classification, we explored new options to test phage genes for their requirement on viral replication. As a model, we used the smallest known Bacillus subtilis phage Goe1, and the Cas9-based mutagenesis vector pRH030 as a genetic tool. All phage genes were specifically disrupted, and individual survival rates and mutant genotypes were investigated. Surviving phages relied on the genome integrity through host intrinsic non-homologues end joining system or a natural alteration of the Cas9 target sequence. Quantification of phage survivors and verifying the underlying genetic situation enables the classification of genes in essential or non-essential sets for viral replication. We also observed structural genes to hold more natural mutations than genes of the genome replication machinery.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Syamantak Basu
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Muhammad M Nawaz
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
11
|
Stanton CR, Rice DTF, Beer M, Batinovic S, Petrovski S. Isolation and Characterisation of the Bundooravirus Genus and Phylogenetic Investigation of the Salasmaviridae Bacteriophages. Viruses 2021; 13:1557. [PMID: 34452423 PMCID: PMC8402886 DOI: 10.3390/v13081557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Bacillus is a highly diverse genus containing over 200 species that can be problematic in both industrial and medical settings. This is mainly attributed to Bacillus sp. being intrinsically resistant to an array of antimicrobial compounds, hence alternative treatment options are needed. In this study, two bacteriophages, PumA1 and PumA2 were isolated and characterized. Genome nucleotide analysis identified the two phages as novel at the DNA sequence level but contained proteins similar to phi29 and other related phages. Whole genome phylogenetic investigation of 34 phi29-like phages resulted in the formation of seven clusters that aligned with recent ICTV classifications. PumA1 and PumA2 share high genetic mosaicism and form a genus with another phage named WhyPhy, more recently isolated from the United States of America. The three phages within this cluster are the only candidates to infect B. pumilus. Sequence analysis of B. pumilus phage resistant mutants revealed that PumA1 and PumA2 require polymerized and peptidoglycan bound wall teichoic acid (WTA) for their infection. Bacteriophage classification is continuously evolving with the increasing phages' sequences in public databases. Understanding phage evolution by utilizing a combination of phylogenetic approaches provides invaluable information as phages become legitimate alternatives in both human health and industrial processes.
Collapse
Affiliation(s)
- Cassandra R. Stanton
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Daniel T. F. Rice
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Michael Beer
- Department of Defence Science and Technology, Port Melbourne, VIC 3207, Australia;
| | - Steven Batinovic
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Steve Petrovski
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| |
Collapse
|
12
|
Li C, Yuan X, Li N, Wang J, Yu S, Zeng H, Zhang J, Wu Q, Ding Y. Isolation and Characterization of Bacillus cereus Phage vB_BceP-DLc1 Reveals the Largest Member of the Φ29-Like Phages. Microorganisms 2020; 8:E1750. [PMID: 33171789 PMCID: PMC7695010 DOI: 10.3390/microorganisms8111750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Bacillus phage φ29 and its relatives have been considered as one of the most important model organisms for DNA replication, transcription, morphogenesis, DNA packaging studies, and nanotechnology applications. Here, we isolated and characterized a new member of the φ29-like phage, named Bacillus cereus phage vB_BceP-DLc1. This phage, with a unique inserted gene cluster, has the largest genome among known φ29-like phages. DLc1 can use the surface carbohydrate structures of the host cell as receptors and only infects the most related B. cereus strains, showing high host-specificity. The adsorption rate constant and life cycle of DLc1 under experimental conditions were also determined. Not only stable under temperatures below 55 °C and pH range from 5 to 11, the new phage also showed tolerance to high concentrations of NaCl, 75% ethanol, chloroform, and mechanical vortex, which is preferable for practical use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Chun Li
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
| | - Xiaoming Yuan
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Na Li
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Shubo Yu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
13
|
Kong L, Ding Y, Wu Q, Wang J, Zhang J, Li H, Yu S, Yu P, Gao T, Zeng H, Yang M, Liang Y, Wang Z, Xie Z, Wang Q. Genome sequencing and characterization of three Bacillus cereus-specific phages, DK1, DK2, and DK3. Arch Virol 2019; 164:1927-1929. [PMID: 31011817 DOI: 10.1007/s00705-019-04258-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
In the study, three Bacillus cereus-specific phages, named DK1, DK2 and DK3, belonging to the family Podoviridae, were isolated from Pearl River water and sludge in Guangzhou, China. The genomes of DK1, DK2 and DK3 were 27,180 bp, 26,357 bp, and 26,865 bp in length and contained 49, 45 and 46 open reading frames, respectively. Among the three phages, DK2 shared the highest genome sequence similarity (96% identity) with DK3. Genes encoding rRNA, tRNA, virulence factors and antibiotic resistance were absent in these phage genomes. In addition, comparative genomic and phylogenetic analysis revealed that they were novel phages of B. cereus. Each genome encoded a putative endolysin that might be of value for the control of the foodborne pathogen B. cereus.
Collapse
Affiliation(s)
- Li Kong
- Department of Food Science & Technology, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
- Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100 #, 58th Building, Guangzhou, 510070, China
- College of Life Sciences, Jinan University, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China.
| | - Qingping Wu
- Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100 #, 58th Building, Guangzhou, 510070, China.
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jumei Zhang
- Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100 #, 58th Building, Guangzhou, 510070, China
| | - Hongye Li
- College of Life Sciences, Jinan University, Guangzhou, China
| | - Shubo Yu
- Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100 #, 58th Building, Guangzhou, 510070, China
| | - Pengfei Yu
- Department of Food Science & Technology, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
- Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100 #, 58th Building, Guangzhou, 510070, China
| | - Tiantian Gao
- Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100 #, 58th Building, Guangzhou, 510070, China
| | - Haiyan Zeng
- Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100 #, 58th Building, Guangzhou, 510070, China
| | - Meiyan Yang
- Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100 #, 58th Building, Guangzhou, 510070, China
| | - Yongjian Liang
- Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100 #, 58th Building, Guangzhou, 510070, China
| | - Zhi Wang
- Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Zhong Road 100 #, 58th Building, Guangzhou, 510070, China
| | - Zhiqing Xie
- Department of Food Science & Technology, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| | - Qianwen Wang
- Department of Food Science & Technology, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, China
| |
Collapse
|