1
|
Rueda-Maíllo F, Garrido-Jurado I, Kotta-Loizou I, Quesada-Moraga E. A mycoviral infection drives virulence and ecological fitness of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 2024; 209:108251. [PMID: 39644991 DOI: 10.1016/j.jip.2024.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Entomopathogenic ascomycetes are important natural regulators of insect pest populations and an increasingly adopted microbial control option. Fungal virulence in entomopathogenic ascomycetes can be modified by mycoviruses, viruses that infect fungi, whereas the possible role of these viruses on the physical and biochemical properties of the virus-containing fungal strains and on their ecological fitness has remained largely unexplored. Here, utilizing a Beauveria bassiana strain naturally infected with two mycoviruses, Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1), we found that the mycovirus-containing strain is hypervirulent towards the experimental insect Galleria mellonella and shows major physical and biochemical changes in spore size, isoelectric point, and Pr1 activity, but even more impactful, the mycoviral infection confers a significant environmental- abiotic and biotic stress tolerance to the fungus. Hence, mycovirus infection expanded the temperature range for fungal growth and germination, and improved tolerance to osmotic stress, water stress, and UV-B radiation. Similarly, the antagonistic activity of the mycovirus-containing strain against Trichoderma harzianum was increased as compared to the mycovirus-free one. Taken together, these data suggest for the first time a mycovirus related adaptation of key traits indicators of environmental competence of a beneficial fungus, rendering these mycoviruses as potent tools for entomopathogenic fungal strain selection and development as mycoinsecticides.
Collapse
Affiliation(s)
- F Rueda-Maíllo
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain
| | - I Garrido-Jurado
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain
| | - I Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, United Kingdom
| | - E Quesada-Moraga
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain.
| |
Collapse
|
2
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
3
|
Molecular characterization of a novel polymycovirus identified in the phytopathogenic fungus Colletotrichum gloeosporioides. Arch Virol 2022; 167:2805-2810. [PMID: 36308546 DOI: 10.1007/s00705-022-05591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022]
Abstract
A novel polymycovirus isolated from the plant-pathogenic fungus Colletotrichum gloeosporioides was identified. The viral genome is composed of nine double-stranded RNA segments, ranging in size from 699 bp to 2,444 bp. With the exception of dsRNA5, which contains two open reading frames (ORF5-1 and ORF5-2), the other dsRNA segments each contain one ORF. The proteins encoded by ORFs 1-8 are homologous to the proteins encoded by ORFs 1-8 of Colletotrichum camelliae filamentous virus 1 (CcFV-1). The amino acid sequences of the RNA-dependent RNA polymerase (RdRp) encoded by ORF1 and the viral methyltransferase encoded by ORF3 share 87.6% and 83.3% identity with CcFV-1. The proline-alanine-serine-rich protein (PASrp) encoded by ORF4 shares 86.6% sequence identity with that of CcFV-1. The proteins encoded by ORFs 2, 5 - 1, 6, 7, and 8 share 86.6%, 82.5%, 89.0%, 45.7%, and 95.5% sequence identity, respectively, with the corresponding proteins of CcFV-1. dsRNA9 is a defective copy of dsRNA2 that lacks a stretch of 1556 bp (nt 519 to nt 2074). Phylogenetic analysis based on the RdRp protein indicated that the novel virus clustered with members of the family Polymycoviridae, and based on the above results, we have tentatively named it "Colletotrichum gloeosporioides polymycovirus virus 1" (CgPmV1). To our knowledge, this is the first report of a polymycovirus with a defective dsRNA genome in C. gloeosporioides.
Collapse
|
4
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Soroush F, Varma RS. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int J Biol Macromol 2022; 222:1589-1604. [DOI: 10.1016/j.ijbiomac.2022.09.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
5
|
Galán-Cubero R, Córdoba L, Rodríguez-Romero J, Chiapello M, Turina M, Ayllón MA. Molecular Data of a Novel Penoulivirus Associated with the Plant-Pathogenic Fungus Erysiphe necator. PHYTOPATHOLOGY 2022; 112:1587-1591. [PMID: 35509205 DOI: 10.1094/phyto-12-21-0536-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Rocío Galán-Cubero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Laura Córdoba
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Julio Rodríguez-Romero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28040, Spain
| |
Collapse
|
6
|
Shuai S, Zheng H, Ding H, Wang Y, Li J, Liu F, Liu F, An H, Fang S, Zhang S, Deng Q. Molecular characterization of a novel botourmiavirus with inverted complementary termini from the rice blast fungus Magnaporthe oryzae isolate HF04. Arch Virol 2022; 167:1899-1903. [PMID: 35716263 DOI: 10.1007/s00705-022-05506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
A novel positive-sense single-stranded RNA mycovirus, designated as "Magnaporthe oryzae botourmiavirus 10" (MoBV10), was identified in the rice blast fungus Magnaporthe oryzae isolate HF04. MoBV10 has a single genomic RNA segment consisting of 2,448 nucleotides, which contains a single open reading frame encoding an RNA-dependent RNA polymerase. Genome comparison and phylogenetic analysis indicated that MoBV10 is a new member of the genus Betascleroulivirus in the family Botourmiaviridae. The 5'- and 3'-terminal sequences of the genomic RNA of MoBV10 have inverted complementarity and potentially form a panhandle structure, which is very rare in RNA viruses.
Collapse
Affiliation(s)
- Simnin Shuai
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Hong Zheng
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Hang Ding
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Yao Wang
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Jinzhe Li
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Fuyu Liu
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Fengying Liu
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Hongliu An
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Shouguo Fang
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Songbai Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Qingchao Deng
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China. .,Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, China.
| |
Collapse
|
7
|
De Miccolis Angelini RM, Raguseo C, Rotolo C, Gerin D, Faretra F, Pollastro S. The Mycovirome in a Worldwide Collection of the Brown Rot Fungus Monilinia fructicola. J Fungi (Basel) 2022; 8:jof8050481. [PMID: 35628739 PMCID: PMC9147972 DOI: 10.3390/jof8050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The fungus Monilinia fructicola is responsible for brown rot on stone and pome fruit and causes heavy yield losses both pre- and post-harvest. Several mycoviruses are known to infect fungal plant pathogens. In this study, a metagenomic approach was applied to obtain a comprehensive characterization of the mycovirome in a worldwide collection of 58 M. fructicola strains. Deep sequencing of double-stranded (ds)RNA extracts revealed a great abundance and variety of mycoviruses. A total of 32 phylogenetically distinct positive-sense (+) single-stranded (ss)RNA viruses were identified. They included twelve mitoviruses, one in the proposed family Splipalmiviridae, and twelve botourmiaviruses (phylum Lenarviricota), eleven of which were novel viral species; two hypoviruses, three in the proposed family Fusariviridae, and one barnavirus (phylum Pisuviricota); as well as one novel beny-like virus (phylum Kitrinoviricota), the first one identified in Ascomycetes. A partial sequence of a new putative ssDNA mycovirus related to viruses within the Parvoviridae family was detected in a M. fructicola isolate from Serbia. The availability of genomic sequences of mycoviruses will serve as a solid basis for further research aimed at deepening the knowledge on virus–host and virus–virus interactions and to explore their potential as biocontrol agents against brown rot disease.
Collapse
|
8
|
Wang Q, Zou Q, Dai Z, Hong N, Wang G, Wang L. Four Novel Mycoviruses from the Hypovirulent Botrytis cinerea SZ-2-3y Isolate from Paris polyphylla: Molecular Characterisation and Mitoviral Sequence Transboundary Entry into Plants. Viruses 2022; 14:v14010151. [PMID: 35062353 PMCID: PMC8777694 DOI: 10.3390/v14010151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission.
Collapse
Affiliation(s)
- Qiong Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Hainan University, Ministry of Education, Haikou 570100, China;
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-2130; Fax: +86-27-8738-4670
| |
Collapse
|
9
|
Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ, Xu BL. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front Microbiol 2021; 12:670135. [PMID: 34122383 PMCID: PMC8192705 DOI: 10.3389/fmicb.2021.670135] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Phytopathogenic fungi decrease crop yield and quality and cause huge losses in agricultural production. To prevent the occurrence of crop diseases and insect pests, farmers have to use many synthetic chemical pesticides. The extensive use of these pesticides has resulted in a series of environmental and ecological problems, such as the increase in resistant weed populations, soil compaction, and water pollution, which seriously affect the sustainable development of agriculture. This review discusses the main advances in research on plant-pathogenic fungi in terms of their pathogenic factors such as cell wall-degrading enzymes, toxins, growth regulators, effector proteins, and fungal viruses, as well as their application as biocontrol agents for plant pests, diseases, and weeds. Finally, further studies on plant-pathogenic fungal resources with better biocontrol effects can help find new beneficial microbial resources that can control diseases.
Collapse
Affiliation(s)
- Yan Peng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shi J Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, Schools of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yong Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jian P Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - An J Gao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jing J Ruan
- College of Agriculture, Guizhou University, Guiyang, China
| | - Bing L Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Complete nucleotide sequence of a novel botourmiavirus from the rice blast fungus Magnaporthe oryzae isolate SH05. Arch Virol 2021; 166:1783-1787. [PMID: 33779811 DOI: 10.1007/s00705-021-05044-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 10/21/2022]
Abstract
A novel mycovirus with the proposed name "Magnaporthe oryzae botourmiavirus 9" (MoBV9) was found in the rice blast fungus Magnaporthe oryzae isolate SH05. The virus has a positive single-stranded RNA genome of 2,812 nucleotides and contains a single open reading frame predicted to encode an RNA-dependent RNA polymerase that is closely related to those of some unclassified viruses of the family Botourmiaviridae, including Plasmopara viticola lesion associated ourmia-like virus 44, Plasmopara viticola lesion associated ourmia-like virus 47, and Cladosporium uredinicola ourmiavirus 1. Genome sequence comparisons and phylogenetic analysis supported the notion that MoBV9 is a new member of the family Botourmiaviridae.
Collapse
|
11
|
Chen F, Pu Z, Ni H, Wang Y, Yan B. Multiple mycoviruses identified in Pestalotiopsis spp. from Chinese bayberry. Virol J 2021; 18:43. [PMID: 33622359 PMCID: PMC7903649 DOI: 10.1186/s12985-021-01513-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background Chinese bayberry (Myrica rubra) is a subtropical fruit crop widely grown in southern China. Twig dieback is a disease of Chinese bayberry caused by Pestalotiopsis spp. and results in great economic losses to Chinese bayberry production. A virus survey was conducted in the population of Pestalotiopsis spp. infecting M. rubra in China. We explored the viral diversity in Pestalotiopsis spp., which may provide resources for further development as biocontrol agents of twig dieback. Methods Strains of Pestalotiopsis spp. were isolated from diseased twigs of M. rubra, and cultured on potato dextrose agar for RNA extraction. The total RNA of each strain was extracted, mixed, and used for RNA sequencing. The resulting sequences were deduplicated, annotated, and then used for phylogenetic analysis. Results Seven novel viruses were characterized from 59 isolates of M. rubra collected from 14 localities in China. Based on the phylogenetic analysis, these viruses were classified into five viral families/orders, Botourmiaviridae, Mitoviridae, Partitiviridae, Tymovirales and Bunyavirales, and one virus, Pestalotiopsis negative-stranded RNA virus 1, which likely belongs to a new viral family. Conclusions Metatranscriptomics analysis showed the presence of various mycoviruses in Pestalotiopsis spp. isolated from M. rubra in China. The genomes of eight putative viruses were identified, seven of which were nearly full-length. Some of these viruses of Pestalotiopsis spp. may have the potential for the biological control of twig dieback of M. rubra. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01513-3.
Collapse
Affiliation(s)
- Fangyong Chen
- Citrus Research Institute of Zhejiang Province, Taizhou, 318026, China.
| | - Zhanxu Pu
- Citrus Research Institute of Zhejiang Province, Taizhou, 318026, China
| | - Haizhi Ni
- Citrus Research Institute of Zhejiang Province, Taizhou, 318026, China
| | - Yin Wang
- Citrus Research Institute of Zhejiang Province, Taizhou, 318026, China
| | - Bangguo Yan
- Citrus Research Institute of Zhejiang Province, Taizhou, 318026, China
| |
Collapse
|
12
|
Wang J, Ni Y, Liu X, Zhao H, Xiao Y, Xiao X, Li S, Liu H. Divergent RNA viruses in Macrophomina phaseolina exhibit potential as virocontrol agents. Virus Evol 2020; 7:veaa095. [PMID: 33505706 PMCID: PMC7816680 DOI: 10.1093/ve/veaa095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macrophomina phaseolina is an important necrotrophic phytopathogenic fungus and cause extensive damage in many oilseed crops. Twelve M.phaseolina isolates with diverse biological phenotypes were selected for a high-throughput sequencing-based metatranscriptomic and bioinformatics analysis to identify viruses infecting M.phaseolina. The analysis identified 40 partial or nearly complete viral genome segments, 31 of which were novel viruses. Among these viral sequences, 43% of the viral genomes were double-stranded RNA (dsRNA), 47% were positive single-stranded RNA (ssRNA+), and the remaining 10% were negative sense-stranded RNA (ssRNA−). The 40 viruses showed affinity to 13 distinct viral lineages, including Bunyavirales (four viruses), Totiviridae (three viruses), Chrysoviridae (five viruses), Partitiviridae (four viruses), Hypoviridae (one virus), Endornaviridae (two viruses), Tombusviridae (three viruses), Narnaviridae (one virus), Potyviridae (one virus), Bromoviridae (one virus), Virgaviridae (six viruses), ‘Fusagraviridae’ (five viruses), and Ourmiavirus (four viruses). Two viruses are closely related to two families, Potyviridae and Bromoviridae, which previously contained no mycovirus species. Moreover, nine novel viruses associated with M.phaseolina were identified in the family Totiviridae, Endornaviridae, and Partitiviridae. Coinfection with multiple viruses is prevalent in M.phaseolina, with each isolate harboring different numbers of viruses, ranging from three to eighteen. Furthermore, the effects of the viruses on the fungal host were analyzed according to the biological characteristics of each isolate. The results suggested that M.phaseolina hypovirus 2, M.phaseolina fusagravirus virus 1-5 (MpFV1-5), M.phaseolina endornavirus 1-2 (MpEV1-2), M.phaseolina ourmia-like virus 1-3 (MpOLV1-3), M.phaseolina mitovirus 4 (MpMV4), and M.phaseolina mycobunyavirus 1-4 (MpMBV1-4) were only detected in hypovirulent isolates. Those viruses associated with hypovirulence might be used as biological control agents as an environmentally friendly alternative to chemical fungicides. These findings considerably expand our understanding of mycoviruses in M.phaseolina and unvailed the presence of a huge difference among viruses in isolates from different hosts in distant geographical regions. Together, the present study provides new knowledge about viral evolution and fungus-virus coevolution.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China.,Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pest in Huanghuai Growing Area, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Yunxia Ni
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Hui Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Yannong Xiao
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, PR China
| | - Xueqiong Xiao
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, PR China
| | - Shujun Li
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pest in Huanghuai Growing Area, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Hongyan Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| |
Collapse
|
13
|
Zhao Y, Zhang Y, Wan X, She Y, Li M, Xi H, Xie J, Wen C. A Novel Ourmia-Like Mycovirus Confers Hypovirulence-Associated Traits on Fusarium oxysporum. Front Microbiol 2020; 11:569869. [PMID: 33362731 PMCID: PMC7756082 DOI: 10.3389/fmicb.2020.569869] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. momordicae (FoM) is an important fungal disease that affects the production of bitter gourd. Hypovirulence-associated mycoviruses have great potential and application prospects for controlling the fungal disease. In this study, a novel ourmia-like virus, named Fusarium oxysporum ourmia-like virus 1 (FoOuLV1), was isolated from FoM strain HuN8. The viral genomic RNA is 2,712 nucleotides (nt) in length and contains an open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) using either standard or mitochondrial codes. In strain HuN8, there was also a FoOuLV1-associated RNA segment with 1,173 nt in length with no sequence homology. Phylogenetic analysis showed that FoOuLV1 is a member of the genus Magoulivirus of the family Botourmiaviridae. FoOuLV1 was found to be associated with hypovirulence in FoM. Moreover, FoOuLV1 and its hypovirulence trait can be transmitted horizontally to other FoM strains and also to other formae speciale strains of F. oxysporum. In addition, FoOuLV1 showed significant biological control effect against the bitter gourd Fusarium wilt. To our knowledge, this study reveals the first description of a hypovirulence-associated ourmia-like mycovirus, which has the potential to the biological control of Fusarium wilt.
Collapse
Affiliation(s)
- Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuanyan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinru Wan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuanyuan She
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Min Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Huijun Xi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
14
|
Liu Y, Zhang L, Esmael A, Duan J, Bian X, Jia J, Xie J, Cheng J, Fu Y, Jiang D, Lin Y. Four Novel Botourmiaviruses Co-Infecting an Isolate of the Rice Blast Fungus Magnaporthe oryzae. Viruses 2020; 12:E1383. [PMID: 33287110 PMCID: PMC7761653 DOI: 10.3390/v12121383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Via virome sequencing, six viruses were detected from Magnaporthe oryzae strains YC81-2, including one virus in the family Tombusviridae, one virus in the family Narnaviridae and four viruses in the family Botourmiaviridae. Since the RNA-dependent RNA polymerase (RdRp) of one botourmiavirus show the highest identity (79%) with Magnaporthe oryzae ourmia-like virus 1 (MOLV1), the virus that was grouped into the genus Magoulivirus was designated as Magnaporthe oryzae botourmiavirus 2 (MOBV2). The three other novel botourmiaviruses were selected for further study. The complete nucleotide sequences of the three botourmiaviruses were determined. Sequence analysis showed that virus 1, virus 2, and virus 3 were 2598, 2385, and 2326 nts in length, respectively. The variable 3' untranslated region (3'-UTR) and 5'-UTR of each virus could be folded into a stable stem-loop secondary structure. Each virus consisted of a unique ORF encoding a putative RdRp. The putative proteins with a conserved GDD motif of RdRp showed the highest sequence similarity to RdRps of viruses in the family Botourmiaviridae. Phylogenetic analysis demonstrated that these viruses were three distinct novel botourmiaviruses, clustered into the Botourmiaviridae family but not belonging to any known genera of this family. Thus, virus 1, virus 2, and virus 3 were designated as Magnaporthe oryzae botourmiavirus 5, 6, and 7 (MOBV5, MOBV6, and MOBV7), respectively. Our results suggest that four distinct botourmiaviruses, MOBV2, MOBV5, MOBV6, and MOBV7, co-infect a single strain of Magnaporthe oryzae, and MOBV5, MOBV6, and MOBV7 are members of three unclassified genera in the family Botourmiaviridae.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
| | - Liyan Zhang
- Institute of Biotechnology, Heilongjiang Academy of Agricultural Sciences, Harbin 150001, China;
| | - Ahmed Esmael
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
- Botany and Microbiology Department, Faculty of Science, Benha University, Qalubiya Governorate, Benha 13511, Egypt
| | - Jie Duan
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Xuefeng Bian
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| |
Collapse
|
15
|
Owashi Y, Aihara M, Moriyama H, Arie T, Teraoka T, Komatsu K. Population Structure of Double-Stranded RNA Mycoviruses That Infect the Rice Blast Fungus Magnaporthe oryzae in Japan. Front Microbiol 2020; 11:593784. [PMID: 33193269 PMCID: PMC7664462 DOI: 10.3389/fmicb.2020.593784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022] Open
Abstract
Various viruses infect Magnaporthe oryzae (syn. Pyricularia oryzae), which is a well-studied fungus that causes rice blast disease. Most research has focused on the discovery of new viruses and the hypovirulence-associated traits conferred by them. Therefore, the diversity and prevalence of viruses in wild fungal populations have not been explored. We conducted a comprehensive screening of M. oryzae mycoviruses from various regions in Japan using double-stranded RNA (dsRNA) electrophoresis and RT-PCR assays. We detected three mycoviruses, Magnaporthe oryzae virus 2 (MoV2), Magnaporthe oryzae chrysovirus 1 (MoCV1), and Magnaporthe oryzae partitivirus 1 (MoPV1), among 127 of the 194 M. oryzae strains screened. The most prevalent virus was MoPV1 (58.8%), which often co-infected in a single fungal strain together with MoV2 or MoCV1. MoV2 and MoCV1 were found in 22.7 and 10.8% of strains, respectively, and they were usually distributed in different regions so that mixed-infection with these two mycoviruses was extremely rare. The predominance of MoPV1 in M. oryzae is supported by significant negative values from neutrality tests, which indicate that the population size of MoPV1 tends to increase. Population genetic analyses revealed high nucleotide diversity and the presence of phylogenetically diverse subpopulations among the MoV2 isolates. This was not the case for MoPV1. Furthermore, studies of a virus-cured M. oryzae strain revealed that MoV2 does not cause any abnormalities or symptoms in its host. However, a leaf sheath inoculation assay showed that its presence slightly increased the speed of mycelial growth, compared with virus-free mycelia. These results demonstrate that M. oryzae in Japan harbors diverse dsRNA mycovirus communities with wide variations in their population structures among different viruses.
Collapse
Affiliation(s)
- Yuta Owashi
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan.,Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Fukuyama, Japan
| | - Mitsuhiro Aihara
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Hiromitsu Moriyama
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Tohru Teraoka
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| |
Collapse
|
16
|
Olivé M, Campo S. The dsRNA mycovirus ChNRV1 causes mild hypervirulence in the fungal phytopathogen Colletotrichum higginsianum. Arch Microbiol 2020; 203:241-249. [PMID: 32914229 DOI: 10.1007/s00203-020-02030-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The genus Colletotrichum comprises a large number of filamentous fungi responsible for anthracnose diseases in many tropical and subtropical fruits and vegetables. In particular, Colletotrichum higginsianum infects Brassicaceae species, including Arabidopsis. The C. higginsianum strain IMI349063A is naturally infected with a dsRNA virus, named Colletorichum higginsianum non-segmented virus (ChNRV1). Here, we investigated the biological effect of ChNRV1 in C. higginsianum by comparing strains with and without the virus. ChNRV1 does not have an effect on C. higginsianum growth under salt and cell-wall stress conditions. However, thermal stress reduced C. higginsianum growth rate, this effect being more evident in the wild-type C. higginsianum strain containing the virus. Although ChNRV1 had no effect in conidiation, conidia were narrower when the virus is present. More importantly, ChNRV1 causes a mild increase in C. higginsianum virulence (hypervirulence) when infecting Arabidopsis plants. These findings indicated that, whereas the ChNRV1 mycovirus does not impair growth and conidiation of C. higginsianum, it confers hypervirulence to the fungal host. These findings will help in future research on the effect of mycoviral infection on pathogenic fungi in plant species of agronomical relevance.
Collapse
Affiliation(s)
- Marta Olivé
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain.
| |
Collapse
|
17
|
Espino-Vázquez AN, Bermúdez-Barrientos JR, Cabrera-Rangel JF, Córdova-López G, Cardoso-Martínez F, Martínez-Vázquez A, Camarena-Pozos DA, Mondo SJ, Pawlowska TE, Abreu-Goodger C, Partida-Martínez LP. Narnaviruses: novel players in fungal-bacterial symbioses. ISME JOURNAL 2020; 14:1743-1754. [PMID: 32269378 DOI: 10.1038/s41396-020-0638-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Rhizopus microsporus is an early-diverging fungal species with importance in ecology, agriculture, food production, and public health. Pathogenic strains of R. microsporus harbor an intracellular bacterial symbiont, Mycetohabitans (formerly named Burkholderia). This vertically transmitted bacterial symbiont is responsible for the production of toxins crucial to the pathogenicity of Rhizopus and remarkably also for fungal reproduction. Here we show that R. microsporus can live not only in symbiosis with bacteria but also with two viral members of the genus Narnavirus. Our experiments revealed that both viruses replicated similarly in the growth conditions we tested. Viral copies were affected by the developmental stage of the fungus, the substrate, and the presence or absence of Mycetohabitans. Absolute quantification of narnaviruses in isolated asexual sporangiospores and sexual zygospores indicates their vertical transmission. By curing R. microsporus of its viral and bacterial symbionts and reinfecting bacteria to reestablish symbiosis, we demonstrate that these viruses affect fungal biology. Narnaviruses decrease asexual reproduction, but together with Mycetohabitans, are required for sexual reproductive success. This fungal-bacterial-viral system represents an outstanding model to investigate three-way microbial symbioses and their evolution.
Collapse
Affiliation(s)
- Astrid N Espino-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - J Roberto Bermúdez-Barrientos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.,Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - J Francisco Cabrera-Rangel
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Gonzalo Córdova-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.,Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Faviola Cardoso-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Azul Martínez-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - David A Camarena-Pozos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO, 80521, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.
| |
Collapse
|
18
|
Wang Q, Mu F, Xie J, Cheng J, Fu Y, Jiang D. A Single ssRNA Segment Encoding RdRp Is Sufficient for Replication, Infection, and Transmission of Ourmia-Like Virus in Fungi. Front Microbiol 2020; 11:379. [PMID: 32256466 PMCID: PMC7093599 DOI: 10.3389/fmicb.2020.00379] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/20/2020] [Indexed: 01/07/2023] Open
Abstract
Recently, an increasing number of ourmia-like viruses have been found in fungi; however, the features of these viruses remain unknown. Here, we report a novel ourmia-like virus isolated from Sclerotinia sclerotiorum. This virus, named S. sclerotiorum ourmia-like virus 4 (SsOLV4), has a genome 2,982 nt in length with a G-pentamer (GGGGG) at the 5'-terminus and a C-pentamer (CCCCC) at the 3'-terminus. The SsOLV4 genome has only one large putative open reading frame (ORF) predicted with both standard codes and mitochondrial codes and encodes an RNA-dependent RNA polymerase (RdRp). SsOLV4 is closely phylogenetically related to Pyricularia oryzae ourmia-like virus 1, with 42% identity between the RdRp amino acid sequences. We constructed full-length cDNA of SsOLV4 and synthesized RNA in vitro using the T7 RNA polymerase. The synthesized RNA could transfect S. sclerotiorum protoplasts efficiently. We further found that viral RNA could infect mycelia when mixed with PEG buffer. Our study suggests that a novel genus in family Botourmiaviridae should be established for SsOLV4 and other related viruses and demonstrates that one single-stranded RNA segment encoding RdRp is sufficient for ourmia-like viruses in fungi.
Collapse
Affiliation(s)
- Qihua Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Lin Y, Zhou J, Zhou X, Shuai S, Zhou R, An H, Fang S, Zhang S, Deng Q. A novel narnavirus from the plant-pathogenic fungus Magnaporthe oryzae. Arch Virol 2020; 165:1235-1240. [PMID: 32157391 DOI: 10.1007/s00705-020-04586-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/08/2020] [Indexed: 10/24/2022]
Abstract
A novel mycovirus with the proposed name "Magnaporthe oryzae narnavirus virus 1" (MoNV1), was described in the rice blast fungus Magnaporthe oryzae. The virus has a single-stranded (+ss) RNA genome of 2452 nucleotides, contains a single open reading frame (ORF) predicted to encode an RNA-dependent RNA polymerase (RDRP), and is closely related to some viruses of the genus Narnavirus, family Narnaviridae, including Aspergillus fumigatus narnavirus 1 (AfNV1), Neofusicoccum parvum narnavirus 2 (NpNV2) and Alternaria tenuissima narnavirus 1 (AtNV2). Genome sequence comparisons and phylogenetic analysis suggested that MoNV1 is a new member of the genus Narnavirus. The RDRPs of MoNV1 and some closely related narnaviruses do not contain a typical metal-binding "GDD" motif and catalytic site. Further studies are needed to investigate the replication mechanism of these viruses.
Collapse
Affiliation(s)
- Yuan Lin
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jia Zhou
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.,College of Plant Protection, Hainan University, Haikou, 570228, Hainan, China
| | - Xuan Zhou
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Simin Shuai
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Rendi Zhou
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Hongliu An
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.,Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, 434025, Hubei, China
| | - Shouguo Fang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.,Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, 434025, Hubei, China
| | - Songbai Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China. .,Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, 434025, Hubei, China.
| | - Qingchao Deng
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China. .,Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
20
|
Zhou J, Wang Y, Liang X, Xie C, Liu W, Miao W, Kang Z, Zheng L. Molecular Characterization of a Novel Ourmia-Like Virus Infecting Phoma matteucciicola. Viruses 2020; 12:v12020231. [PMID: 32093074 PMCID: PMC7077192 DOI: 10.3390/v12020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 12/18/2022] Open
Abstract
Here, we report a novel (+) ssRNA mycovirus, Phoma matteucciicola ourmia-like virus 1 (PmOLV1), isolated from Phoma matteucciicola strain LG915-1. The genome of PmOLV1 was 2603 nucleotides long and contained a single open reading frame (ORF), which could be translated into a product of RNA-dependent RNA polymerase (RdRp) by both standard and mitochondrial genetic codons. Cellular fractionation assay indicated that PmOLV1 RNAs are likely more enriched in mitochondria than in cytoplasm. Phylogenetic analysis indicated that PmOLV1 is a new member of the genus Penoulivirus (recently proposed) within the family Botourmiaviridae.
Collapse
Affiliation(s)
- Jia Zhou
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yuhua Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou 570228, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Changping Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou 570228, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou 570228, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou 570228, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Li Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou 570228, China
- Correspondence:
| |
Collapse
|
21
|
Liang N, Yang D, Wu M, Zhang J, Li G, Yang L. Molecular characterization of a novel botoulivirus from the phytopathogenic fungus Sclerotinia minor. Arch Virol 2020; 165:785-788. [PMID: 31980938 DOI: 10.1007/s00705-020-04530-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/17/2019] [Indexed: 11/26/2022]
Abstract
In this study, the complete genomic sequence of a novel botoulivirus (Sclerotinia minor botoulivirus 1, SmBV1) from the phytopathogenic fungus Sclerotinia minor strain LC45 was determined. The genome of SmBV1 is 2,882 nucleotides in length and contains a single large open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis showed that SmBV1 clustered with the botoulivirus clade within the family Botourmiaviridae. This is the first report of a botoulivirus in S. minor.
Collapse
Affiliation(s)
- Na Liang
- The State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Yang
- Hubei Biopesticide Engineering Research Center, Wuhan, 430064, China
| | - Mingde Wu
- The State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhang
- The State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoqing Li
- The State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Yang
- The State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
22
|
A novel ourmia-like mycovirus isolated from the plant pathogenic fungus Colletotrichum gloeosporioides. Arch Virol 2019; 164:2631-2635. [PMID: 31367950 DOI: 10.1007/s00705-019-04346-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
In this study, a novel mycovirus designed Colletotrichum gloeosporioides ourmia-like virus 1 (CgOLV1) was isolated from a filamentous phytopathogenic fungus, Colletotrichum gloeosporioides. The virus has a genome of 2,516 nucleotides and contains a large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis indicated that CgOLV1 is located in the ourmia-like mycovirus clade, whose members are related to plant ourmiaviruses. To the best of our knowledge, this is the first report of an ourmia-like mycovirus in C. gloeosporioides.
Collapse
|