1
|
Saito T, Reyna RA, Taniguchi S, Littlefield K, Paessler S, Maruyama J. Vaccine Candidates against Arenavirus Infections. Vaccines (Basel) 2023; 11:635. [PMID: 36992218 PMCID: PMC10057967 DOI: 10.3390/vaccines11030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The viral family Arenaviridae contains several members that cause severe, and often lethal, diseases in humans. Several highly pathogenic arenaviruses are classified as Risk Group 4 agents and must be handled in the highest biological containment facility, biosafety level-4 (BSL-4). Vaccines and treatments are very limited for these pathogens. The development of vaccines is crucial for the establishment of countermeasures against highly pathogenic arenavirus infections. While several vaccine candidates have been investigated, there are currently no approved vaccines for arenavirus infection except for Candid#1, a live-attenuated Junin virus vaccine only licensed in Argentina. Current platforms under investigation for use include live-attenuated vaccines, recombinant virus-based vaccines, and recombinant proteins. We summarize here the recent updates of vaccine candidates against arenavirus infections.
Collapse
Affiliation(s)
- Takeshi Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirsten Littlefield
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Understanding Host–Virus Interactions: Assessment of Innate Immune Responses in Mastomys natalensis Cells after Arenavirus Infection. Viruses 2022; 14:v14091986. [PMID: 36146793 PMCID: PMC9506377 DOI: 10.3390/v14091986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Mastomys natalensis is the natural host of various arenaviruses, including the human-pathogenic Lassa virus. Homologous arenaviruses, defined here as those having M. natalensis as a natural host, can establish long-lasting infection in M. natalensis, while these animals rapidly clear arenaviruses having another rodent species as a natural host (heterologous viruses). Little is known about the mechanisms behind the underlying arenavirus–host barriers. The innate immune system, particularly the type I interferon (IFN) response, might play a role. In this study, we developed and validated RT-PCR assays to analyse the expression of M. natalensis interferon-stimulated genes (ISGs). We then used these assays to study if homologous and heterologous viruses induce different IFN responses in M. natalensis cells. Infection experiments were performed with the homologous Lassa and Morogoro viruses and the related but heterologous Mobala virus. Compared to the direct induction with IFN or Poly(I:C), arenaviruses generally induced a weak IFN response. However, the ISG-expression profiles of homologous and heterologous viruses were similar. Our data indicate that, at least in M. natalensis cells, the IFN system is not a major factor in the virus–host barrier for arenaviruses. Our system provides a valuable tool for future in vivo investigation of arenavirus host restrictions at the level of the innate immune response.
Collapse
|
3
|
Merabet O, Pietrosemoli N, Perthame E, Armengaud J, Gaillard JC, Borges-Cardoso V, Daniau M, Legras-Lachuer C, Carnec X, Baize S. Infection of Human Endothelial Cells with Lassa Virus Induces Early but Transient Activation and Low Type I IFN Response Compared to the Closely-Related Nonpathogenic Mopeia Virus. Viruses 2022; 14:v14030652. [PMID: 35337059 PMCID: PMC8953476 DOI: 10.3390/v14030652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Lassa virus (LASV), an Old World arenavirus, is responsible for hemorrhagic fevers in western Africa. The privileged tropism of LASV for endothelial cells combined with a dysregulated inflammatory response are the main cause of the increase in vascular permeability observed during the disease. Mopeia virus (MOPV) is another arenavirus closely related to LASV but nonpathogenic for non-human primates (NHPs) and has never been described in humans. MOPV is more immunogenic than LASV in NHPs and in vitro in human immune cell models, with more intense type I IFN and adaptive cellular responses. Here, we compared the transcriptomic and proteomic responses of human umbilical vein endothelial cells (HUVECs) to infection with the two viruses to further decipher the mechanisms involved in their differences in immunogenicity and pathogenicity. Both viruses replicated durably and efficiently in HUVECs, but the responses they induced were strikingly different. Modest activation was observed at an early stage of LASV infection and then rapidly shut down. By contrast, MOPV induced a late but more intense response, characterized by the expression of genes and proteins mainly associated with the type I IFN response and antigen processing/presentation. Such a response is consistent with the higher immunogenicity of MOPV relative to LASV, whereas the lack of an innate response induced in HUVECs by LASV is consistent with its uncontrolled systemic dissemination through the vascular endothelium.
Collapse
Affiliation(s)
- Othmann Merabet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris, 75015 Paris, France; (N.P.); (E.P.)
| | - Emeline Perthame
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris, 75015 Paris, France; (N.P.); (E.P.)
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l’Energie Atomique, 30200 Bagnols-sur-Cèze, France; (J.A.); (J.-C.G.)
| | - Jean-Charles Gaillard
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l’Energie Atomique, 30200 Bagnols-sur-Cèze, France; (J.A.); (J.-C.G.)
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
| | - Maïlys Daniau
- ViroScan3D SAS, 01600 Trévoux, France; (M.D.); (C.L.-L.)
| | | | - Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
- Correspondence: ; Tel.: +33-4-3728-2440
| |
Collapse
|
4
|
Mapaco L, Crespin L, Rodrigues D, Gouy de Bellocq J, Bryja J, Bourgarel M, Missé D, Caron A, Fafetine J, Cappelle J, Liégeois F. Detection and genetic diversity of Mopeia virus in Mastomys natalensis from different habitats in the Limpopo National Park, Mozambique. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105204. [PMID: 34999003 DOI: 10.1016/j.meegid.2022.105204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Mammarenaviruses have been a growing concern for public health in Africa since the 1970s when Lassa virus cases in humans were first described in west Africa. In southern Africa, a single outbreak of Lujo virus was reported to date in South Africa in 2008 with a case fatality rate of 80%. The natural reservoir of Lassa virus is Mastomys natalensis while for the Lujo virus the natural host has yet to be identified. Mopeia virus was described for the first time in M. natalensis in the central Mozambique in 1977 but few studies have been conducted in the region. In this study, rodents were trapped between March and November 2019in villages, croplands fields and mopane woodland forest. The aim was to assess the potential circulation and to evaluate the genetic diversity of mammarenaviruses in M. natalensis trapped in the Limpopo National Park and its buffer zone in Massingir district, Mozambique. A total of 534 M. natalensis were screened by RT-PCR and the overall proportion of positive individuals was 16.9%. No significant differences were detected between the sampled habitats (χ2 = 0.018; DF = 1; p = 0.893). The Mopeia virus (bootstrap value 91%) was the Mammarenavirus circulating in the study area sites, forming a specific sub-clade with eight different sub-clusters. We concluded that Mopeia virus circulates in all habitats investigated and it forms a different sub-clade to the one reported in central Mozambique in 1977.
Collapse
Affiliation(s)
- Lourenço Mapaco
- Agrarian Research Institute of Mozambique, Directorate of Animal Sciences, IIAM, P. O. Box 1922, Maputo, Mozambique; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France; CIRAD, UMR ASTRE, Montpellier, France
| | - Laurent Crespin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122 Saint-Genès-Champanelle, France; Université Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280 Marcy-L'Etoile, France
| | - Dércio Rodrigues
- Agrarian Research Institute of Mozambique, Directorate of Animal Sciences, IIAM, P. O. Box 1922, Maputo, Mozambique
| | - Joelle Gouy de Bellocq
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Josef Bryja
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | | | - Dorothée Missé
- MIVEGEC, University of Montpellier, IRD, CNRS, 34394 Montpellier, France
| | - Alexandre Caron
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France; Veterinary Faculty, UEM, P. O. Box 257, Maputo, Mozambique
| | - Jose Fafetine
- Veterinary Faculty, UEM, P. O. Box 257, Maputo, Mozambique
| | - Julien Cappelle
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France; CIRAD, UMR ASTRE, Montpellier, France.
| | - Florian Liégeois
- MIVEGEC, University of Montpellier, IRD, CNRS, 34394 Montpellier, France; Faculty of Veterinary Science, University of Zimbabwe, P.O. Box MP167, Harare, Zimbabwe.
| |
Collapse
|
5
|
Fernandes J, Miranda RL, de Lemos ERS, Guterres A. MicroRNAs and Mammarenaviruses: Modulating Cellular Metabolism. Cells 2020; 9:E2525. [PMID: 33238430 PMCID: PMC7709035 DOI: 10.3390/cells9112525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Mammarenaviruses are a diverse genus of emerging viruses that include several causative agents of severe viral hemorrhagic fevers with high mortality in humans. Although these viruses share many similarities, important differences with regard to pathogenicity, type of immune response, and molecular mechanisms during virus infection are different between and within New World and Old World viral infections. Viruses rely exclusively on the host cellular machinery to translate their genome, and therefore to replicate and propagate. miRNAs are the crucial factor in diverse biological processes such as antiviral defense, oncogenesis, and cell development. The viral infection can exert a profound impact on the cellular miRNA expression profile, and numerous RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Our present study indicates that mammarenavirus infection induces metabolic reprogramming of host cells, probably manipulating cellular microRNAs. A number of metabolic pathways, including valine, leucine, and isoleucine biosynthesis, d-Glutamine and d-glutamate metabolism, thiamine metabolism, and pools of several amino acids were impacted by the predicted miRNAs that would no longer regulate these pathways. A deeper understanding of mechanisms by which mammarenaviruses handle these signaling pathways is critical for understanding the virus/host interactions and potential diagnostic and therapeutic targets, through the inhibition of specific pathologic metabolic pathways.
Collapse
Affiliation(s)
- Jorlan Fernandes
- Hantaviruses and Rickettsiosis Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Renan Lyra Miranda
- Neurochemistry Interactions Laboratory, Universidade Federal Fluminense, Niterói 24020-150, Brazil;
| | - Elba Regina Sampaio de Lemos
- Hantaviruses and Rickettsiosis Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Alexandro Guterres
- Hantaviruses and Rickettsiosis Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
6
|
Distinct Molecular Mechanisms of Host Immune Response Modulation by Arenavirus NP and Z Proteins. Viruses 2020; 12:v12070784. [PMID: 32708250 PMCID: PMC7412275 DOI: 10.3390/v12070784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Endemic to West Africa and South America, mammalian arenaviruses can cross the species barrier from their natural rodent hosts to humans, resulting in illnesses ranging from mild flu-like syndromes to severe and fatal haemorrhagic zoonoses. The increased frequency of outbreaks and associated high fatality rates of the most prevalent arenavirus, Lassa, in West African countries, highlights the significant risk to public health and to the socio-economic development of affected countries. The devastating impact of these viruses is further exacerbated by the lack of approved vaccines and effective treatments. Differential immune responses to arenavirus infections that can lead to either clearance or rapid, widespread and uncontrolled viral dissemination are modulated by the arenavirus multifunctional proteins, NP and Z. These two proteins control the antiviral response to infection by targeting multiple cellular pathways; and thus, represent attractive targets for antiviral development to counteract infection. The interplay between the host immune responses and viral replication is a key determinant of virus pathogenicity and disease outcome. In this review, we examine the current understanding of host immune defenses against arenavirus infections and summarise the host protein interactions of NP and Z and the mechanisms that govern immune evasion strategies.
Collapse
|
7
|
Klitting R, Mehta SB, Oguzie JU, Oluniyi PE, Pauthner MG, Siddle KJ, Andersen KG, Happi CT, Sabeti PC. Lassa Virus Genetics. Curr Top Microbiol Immunol 2020. [PMID: 32418034 DOI: 10.1007/82_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a pattern repeated across a range of ecological niches, arenaviruses have evolved a compact four-gene genome to orchestrate a complex life cycle in a narrow range of susceptible hosts. A number of mammalian arenaviruses cross-infect humans, often causing a life-threatening viral hemorrhagic fever. Among this group of geographically bound zoonoses, Lassa virus has evolved a unique niche that leads to significant and sustained human morbidity and mortality. As a biosafety level 4 pathogen, direct study of the pathogenesis of Lassa virus is limited by the sparse availability, high operating costs, and technical restrictions of the high-level biocontainment laboratories required for safe experimentation. In this chapter, we introduce the relationship between genome structure and the life cycle of Lassa virus and outline reverse genetic approaches used to probe and describe functional elements of the Lassa virus genome. We then review the tools used to obtain viral genomic sequences used for phylogeny and molecular diagnostics, before shifting to a population perspective to assess the contributions of phylogenetic analysis in understanding the evolution and ecology of Lassa virus in West Africa. We finally consider the future outlook and clinical applications for genetic study of Lassa virus.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | - Samar B Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Judith U Oguzie
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | | | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA.
| | - Christian T Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Differential Immune Responses to Hemorrhagic Fever-Causing Arenaviruses. Vaccines (Basel) 2019; 7:vaccines7040138. [PMID: 31581720 PMCID: PMC6963578 DOI: 10.3390/vaccines7040138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
The family Arenaviridae contains several pathogens of major clinical importance. The Old World (OW) arenavirus Lassa virus is endemic in West Africa and is estimated to cause up to 300,000 infections each year. The New World (NW) arenaviruses Junín and Machupo periodically cause hemorrhagic fever outbreaks in South America. While these arenaviruses are highly pathogenic in humans, recent evidence indicates that pathogenic OW and NW arenaviruses interact with the host immune system differently, which may have differential impacts on viral pathogenesis. Severe Lassa fever cases are characterized by profound immunosuppression. In contrast, pathogenic NW arenavirus infections are accompanied by elevated levels of Type I interferon and pro-inflammatory cytokines. This review aims to summarize recent findings about interactions of these pathogenic arenaviruses with the innate immune machinery and the subsequent effects on adaptive immunity, which may inform the development of vaccines and therapeutics against arenavirus infections.
Collapse
|