1
|
Cao X, Ye X, Sattar A. Transcriptomic and coexpression network analyses revealed the regulatory mechanism of Cydia pomonella infestation on the synthesis of phytohormones in walnut husks. PeerJ 2024; 12:e18130. [PMID: 39329139 PMCID: PMC11426320 DOI: 10.7717/peerj.18130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The codling moth (Cydia pomonella) has a major effect on the quality and yield of walnut fruit. Plant defences respond to insect infestation by activating hormonal signalling and the flavonoid biosynthetic pathway. However, little is known about the role of walnut husk hormones and flavonoid biosynthesis in response to C. pomonella infestation. The phytohormone content assay revealed that the contents of salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-ILE), jasmonic acid-valine (JA-Val) and methyl jasmonate (MeJA) increased after feeding at different time points (0, 12, 24, 36, 48, and 72 h) of walnut husk. RNA-seq analysis of walnut husks following C. pomonella feeding revealed a temporal pattern in differentially expressed genes (DEGs), with the number increasing from 3,988 at 12 h to 5,929 at 72 h postfeeding compared with the control at 0 h postfeeding. Walnut husks exhibited significant upregulation of genes involved in various defence pathways, including flavonoid biosynthesis (PAL, CYP73A, 4CL, CHS, CHI, F3H, ANS, and LAR), SA (PAL), ABA (ZEP and ABA2), and JA (AOS, AOC, OPR, JAZ, and MYC2) pathways. Three gene coexpression networks that had a significant positive association with these hormonal changes were constructed based on the basis of weighted gene coexpression network analysis (WGCNA). We identified several hub transcription factors, including the turquoise module (AIL6, MYB4, PRE6, WRKY71, WRKY31, ERF003, and WRKY75), the green module (bHLH79, PCL1, APRR5, ABI5, and ILR3), and the magenta module (ERF27, bHLH35, bHLH18, TIFY5A, WRKY31, and MYB44). Taken together, these findings provide useful genetic resources for exploring the defence response mediated by phytohormones in walnut husks.
Collapse
Affiliation(s)
- Xiaoyan Cao
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xiaoqin Ye
- College of Forestry and Landscape Architecture, Xinjiang Agriculture University, Urumqi, China
| | - Adil Sattar
- College of Forestry and Landscape Architecture, Xinjiang Agriculture University, Urumqi, China
| |
Collapse
|
2
|
Lakhova TN, Tsygichko AA, Klimenko AI, Ismailov VY, Vasiliev GV, Asaturova AM, Lashin SA. Assembly and Genome Annotation of Different Strains of Apple Fruit Moth Virus ( Cydia pomonella granulovirus). Int J Mol Sci 2024; 25:7146. [PMID: 39000263 PMCID: PMC11240899 DOI: 10.3390/ijms25137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cydia pomonella granulovirus is a natural pathogen for Cydia pomonella that is used as a biocontrol agent of insect populations. The study of granulovirus virulence is of particular interest since the development of resistance in natural populations of C. pomonella has been observed during the long-term use of the Mexican isolate CpGV. In our study, we present the genomes of 18 CpGV strains endemic to southern Russia and from Kazakhstan, as well as a strain included in the commercial preparation "Madex Twin", which were sequenced and analyzed. We performed comparative genomic analysis using several tools. From comparisons at the level of genes and protein products that are involved in the infection process of virosis, synonymous and missense substitution variants have been identified. The average nucleotide identity has demonstrated a high similarity with other granulovirus genomes of different geographic origins. Whole-genome alignment of the 18 genomes relative to the reference revealed regions of low similarity. Analysis of gene repertoire variation has shown that BZR GV 4, BZR GV 6, and BZR GV L-7 strains have been the closest in gene content to the commercial "Madex Twin" strain. We have confirmed two deletions using read depth coverage data in regions lacking genes shown by homology analysis for granuloviruses BZR GV L-4 and BZR GV L-6; however, they are not related to the known genes causing viral pathogenicity. Thus, we have isolated novel CpGV strains and analyzed their potential as strains producing highly effective bioinsecticides against C. pomonella.
Collapse
Affiliation(s)
- Tatiana N. Lakhova
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Department of Mathematics and Mechanics, Mathematical Center, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra A. Tsygichko
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Alexandra I. Klimenko
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Department of Mathematics and Mechanics, Mathematical Center, Novosibirsk State University, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir Y. Ismailov
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Gennady V. Vasiliev
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
| | - Anzhela M. Asaturova
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Sergey A. Lashin
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Xi Y, Xing L, Wennmann JT, Fan J, Li Z, Wu Q, Lu S, Liu B, Guo J, Qiao X, Huang C, Qian W, Jehle JA, Wan F. Gene expression patterns of Cydia pomonella granulovirus in codling moth larvae revealed by RNAseq analysis. Virology 2021; 558:110-118. [PMID: 33756423 DOI: 10.1016/j.virol.2021.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
The Cydia pomonella granulovirus (CpGV) has been used as a biological control agent of codling moth (Cydia pomonella), a severe global pest on pome fruit. Despite the economic importance, our knowledge of its molecular biology is still limited and a detailed picture of its gene expression is still missing. Here, we sequenced the transcriptome of codling moth larvae infected with the Mexican isolate CpGV-M and analyzed the expression of viral genes at 12, 48, and 96 h post infection (hpi). The results showed that two genes (p6.9 and pp31/39K) related to DNA binding of virus production, were highly expressed at 48 and 96 hpi. From 48 to 96 hpi, the expression of genes associated with virus replication and dissemination decreased, whereas the expression of genes related to infectious virion production and per os infectivity increased. This study provides a comprehensive view of CpGV gene expression patterns in host larvae.
Collapse
Affiliation(s)
- Yu Xi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstraße 243, 64287, Darmstadt, Germany
| | - Longsheng Xing
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jörg T Wennmann
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstraße 243, 64287, Darmstadt, Germany
| | - Jiangbin Fan
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstraße 243, 64287, Darmstadt, Germany
| | - Zaiyuan Li
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Sha Lu
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xi Qiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Johannes A Jehle
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstraße 243, 64287, Darmstadt, Germany.
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Fan J, Wennmann JT, Wang D, Jehle JA. Novel Diversity and Virulence Patterns Found in New Isolates of Cydia pomonella Granulovirus from China. Appl Environ Microbiol 2020; 86:e02000-19. [PMID: 31676472 PMCID: PMC6952229 DOI: 10.1128/aem.02000-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022] Open
Abstract
Cydia pomonella granulovirus (CpGV) is successfully used worldwide as a biocontrol agent of the codling moth (CM) (Cydia pomonella). The occurrence of CM populations with different modes of resistance against commercial CpGV preparations in Europe, as well as the invasiveness of CM in China, threatening major apple production areas there, requires the development of new control options. Utilizing the naturally occurring genetic diversity of CpGV can improve such control strategies. Here, we report the identification of seven new CpGV isolates that were collected from infected CM larvae in northwest China. Resistance testing using a discriminating CpGV concentration and the determination of the median lethal concentration (LC50) were performed to characterize their levels of virulence against susceptible and resistant CM larvae. The isolates were further screened for the presence of the 2 × 12-bp-repeat insertion in CpGV gene pe38 (open reading frame 24 [ORF24]), which was shown to be the target of type I resistance. It was found that three isolates, CpGV-JQ, -KS1, and -ZY2, could break type I resistance, although delayed mortality was observed in the infection process. All isolates followed the pe38 model of breaking type I resistance, except for CpGV-WW, which harbored the genetic factor but failed to overcome type I resistance. However, CpGV-WW was able to overcome type II and type III resistance. The bioassay results and sequencing data of pe38 support previous findings that pe38 is the major target for type I resistance. The new isolates show some distinct virulence characteristics when infection of different CM strains is considered.IMPORTANCE CpGV is a highly virulent pathogen of the codling moth (CM). It is registered and widely applied as a biocontrol agent in nearly all apple-growing countries worldwide. The emergence of CpGV resistance and the increasing lack of chemical control options require improvements to current control strategies. Natural CpGV isolates, as well as resistance-breaking isolates selected in resistant CM strains, have provided resources for improved resistance-breaking CpGV products. Here, we report novel CpGV isolates collected in China, which have new resistance-breaking capacities and may be an important asset for future application in the biological control of codling moths.
Collapse
Affiliation(s)
- Jiangbin Fan
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Jörg T Wennmann
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| |
Collapse
|