1
|
Wang G, Tian X, Peng R, Huang Y, Li Y, Li Z, Hu X, Luo Z, Zhang Y, Cui X, Niu L, Lu G, Yang F, Gao L, Chan JFW, Jin Q, Yin F, Tang C, Ren Y, Du J. Genomic and phylogenetic profiling of RNA of tick-borne arboviruses in Hainan Island, China. Microbes Infect 2024; 26:105218. [PMID: 37714509 DOI: 10.1016/j.micinf.2023.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Ticks act as vectors and hosts of numerous arboviruses. Examples of medically important arboviruses include the tick-borne encephalitis virus, Crimean Congo hemorrhagic fever, and severe fever with thrombocytopenia syndrome. Recently, some novel arboviruses have been identified in blood specimens of patients with unexplained fever and a history of tick bites in Inner Mongolia. Consequently, tick-borne viruses are a major focus of infectious disease research. However, the spectrum of tick-borne viruses in subtropical areas of China has yet to be sufficiently characterized. In this study, we collected 855 ticks from canine and bovine hosts in four locations in Hainan Province. The ticks were combined into 18 pools according to genus and location. Viral RNA-sequence libraries were subjected to transcriptome sequencing analysis. Molecular clues from metagenomic analyses were used to classify sequence reads into virus species, genera, or families. The diverse viral reads closely associated with mammals were assigned to 12 viral families and important tick-borne viruses, such as Jingmen, Beiji nairovirus, and Colorado tick fever. Our virome and phylogenetic analyses of the arbovirus strains provide basic data for preventing and controlling human infectious diseases caused by tick-borne viruses in the subtropical areas of China.
Collapse
Affiliation(s)
- Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Xiuying Tian
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Yi Huang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Youyou Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Zihan Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Zufen Luo
- Department of Infectious Disease, the Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, China
| | - Yun Zhang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Xiuji Cui
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Lina Niu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Gang Lu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Chuanning Tang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Yi Ren
- Haikou Maternal and Child Health Hospital, Haikou, 570102, China.
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
2
|
Ahrabi SZ, Akyildiz G, Kar S, Keles AG. Detection of the Crimean-Congo Hemorrhagic Fever Virus Genome in Questing Ixodes spp. and Haemaphysalis spp. in the Periurban Forestry Areas of Istanbul: Has a New Biorisk Emerged? Vector Borne Zoonotic Dis 2023; 23:528-536. [PMID: 37527191 DOI: 10.1089/vbz.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background: Istanbul is one of the world's most densely populated metropolitan cities, with various geographical areas that possess distinct characteristics. These areas have different climates, vegetation, and host populations that can support the survival of diverse tick species. Turkey is a region with a high risk of Crimean-Congo hemorrhagic fever (CCHF) disease, making it crucial to screen for this risk, especially in densely populated regions such as Istanbul and its surrounding areas. However, the presence of potential vectors for CCHF virus (CCHFV) in these areas has not been studied in the past 12 years. Materials and Methods: In this study, a total of 676 ticks were collected from 6 centers using the flagging and dragging method. Ticks were identified as Ixodes ricinus (7.85%), Ixodes spp. immature form (73.22%), Haemaphysalis parva (0.89%), Haemaphysalis inermis (0.15%), and Haemaphysalis spp. immature form (17.89%). Pooled samples were screened for the CCHFV genome (S segment) by RT-nested PCR. Results: A total of 14.28% of the samples were found as positive. Phylogenetic analysis revealed that all the CCHFV sequences obtained from the positive samples were clustered in clade V: Europe/Turkey genogroup. Conclusion: This study suggests that ixodes spp. and Haemaphysalis spp. may have the potential to pose a biorisk for Crimean-Congo hemorrhagic fever.
Collapse
Affiliation(s)
- Salar Zarrabi Ahrabi
- Department of Basic Health Science, Health Sciences Faculty, Marmara University, Istanbul, Turkey
| | - Gurkan Akyildiz
- Department of Basic Health Science, Health Sciences Faculty, Marmara University, Istanbul, Turkey
| | - Sirri Kar
- Department of Biology, Faculty of Arts and Science, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Aysen Gargili Keles
- Department of Basic Health Science, Health Sciences Faculty, Marmara University, Istanbul, Turkey
| |
Collapse
|
3
|
Ergunay K, Dincer E, Justi SA, Bourke BP, Nelson SP, Liao HM, Timurkan MO, Oguz B, Sahindokuyucu I, Gokcecik OF, Reinbold-Wasson DD, Jiang L, Achee NL, Grieco JP, Linton YM. Impact of nanopore-based metagenome sequencing on tick-borne virus detection. Front Microbiol 2023; 14:1177651. [PMID: 37323891 PMCID: PMC10267750 DOI: 10.3389/fmicb.2023.1177651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction We evaluated metagenomic nanopore sequencing (NS) in field-collected ticks and compared findings from amplification-based assays. Methods Forty tick pools collected in Anatolia, Turkey and screened by broad-range or nested polymerase chain reaction (PCR) for Crimean-Congo Hemorrhagic Fever Virus (CCHFV) and Jingmen tick virus (JMTV) were subjected to NS using a standard, cDNA-based metagenome approach. Results Eleven viruses from seven genera/species were identified. Miviruses Bole tick virus 3 and Xinjiang mivirus 1 were detected in 82.5 and 2.5% of the pools, respectively. Tick phleboviruses were present in 60% of the pools, with four distinct viral variants. JMTV was identified in 60% of the pools, where only 22.5% were PCR-positive. CCHFV sequences characterized as Aigai virus were detected in 50%, where only 15% were detected by PCR. NS produced a statistically significant increase in detection of these viruses. No correlation of total virus, specific virus, or targeted segment read counts was observed between PCR-positive and PCR-negative samples. NS further enabled the initial description of Quaranjavirus sequences in ticks, where human and avian pathogenicity of particular isolates had been previously documented. Discussion NS was observed to surpass broad-range and nested amplification in detection and to generate sufficient genome-wide data for investigating virus diversity. It can be employed for monitoring pathogens in tick vectors or human/animal clinical samples in hot-spot regions for examining zoonotic spillover.
Collapse
Affiliation(s)
- Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ender Dincer
- Department of Virology, Faculty of Veterinary Medicine, Dokuz Eylül University, Izmir, Türkiye
| | - Silvia A. Justi
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Brian P. Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Suppaluck P. Nelson
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Hsiao-Mei Liao
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Mehmet Ozkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum, Türkiye
| | - Bekir Oguz
- Department of Parasitology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Türkiye
| | - Ismail Sahindokuyucu
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, Izmir, Türkiye
| | - Omer Faruk Gokcecik
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, Izmir, Türkiye
| | | | - Le Jiang
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| |
Collapse
|
4
|
Ergünay K, Polat C, Özkul A. Vector-borne viruses in Turkey: A systematic review and bibliography. Antiviral Res 2020; 183:104934. [PMID: 32949637 DOI: 10.1016/j.antiviral.2020.104934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022]
Abstract
Turkey serves as a natural hub for the dissemination of vector-borne viruses and provides many suitable habitats with diverse ecologies for introduction and establishment of new pathogens. This manuscript provides an updated systematic review and meta-analysis of the vector-borne viruses documented in Turkey. Following web-based identification, screening and eligibility evaluation, 291 published reports were reviewed. The publications were categorized and listed as a supplementary bibliography accompanying the manuscript. In brief, Crimean-Congo hemorrhagic fever virus (CCHFV) and West Nile virus (WNV) are currently documented as prominent tick and mosquito-borne viral pathogens in Turkey. CCHFV produces a significant number of infections annually, with severe outcome or death in a portion of cases. WNV gained attention following the clustering of cases in 2010. Exposure and infections with sandfly-borne phleboviruses, such as Toscana virus, are indigenous and widespread. Epidemiology, risk factors, symptomatic infections in susceptible hosts, vectors and reservoirs for these pathogens have been explored in detail. Detection of novel viruses in mosquitoes, sandflies and ticks from several regions is of particular interest, despite scarce information on their epidemiology and pathogenicity in vertebrates. Introduction and emergence of viruses transmitted by invasive Aedes mosquitoes constitute a threat, albeit only imported infections have so far been documented. Detection of Rift valley fever virus exposure is also of concern, due to its detrimental effects on livestock and spillover infections in humans. Vigilance to identify and diagnose probable cases as well as vector surveillance for established and potential pathogens is therefore, imperative.
Collapse
Affiliation(s)
- Koray Ergünay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara, 06100, Turkey.
| | - Ceylan Polat
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara, 06100, Turkey
| | - Aykut Özkul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, 06110, Turkey
| |
Collapse
|
5
|
Klimentov AS, Belova OA, Kholodilov IS, Butenko AM, Bespyatova LA, Bugmyrin SV, Chernetsov N, Ivannikova AY, Kovalchuk IV, Nafeev AA, Oorzhak ND, Pilikova OM, Polienko AE, Purmak KA, Romanenko EN, Romanova LI, Saryglar AA, Solomashchenko NI, Shamsutdinov AF, Vakalova EV, Lukashev AN, Karganova GG, Gmyl AP. Phlebovirus sequences detected in ticks collected in Russia: Novel phleboviruses, distinguishing criteria and high tick specificity. INFECTION GENETICS AND EVOLUTION 2020; 85:104524. [PMID: 32891876 DOI: 10.1016/j.meegid.2020.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
Phlebovirus is an abundant and rather heterogeneous genus within the Phenuiviridae family (order Bunyavirales). The genus Phlebovirus is divided into two antigenic complexes, which also correspond to the main vector: sandflies/mosquitoes and ticks. Previously, only sandfly/mosquito-borne phleboviruses were associated with human disease, such as Rift Valley fever virus, Toscana virus, Sicilian and Naples Sandfly fever viruses and others. Until recently, tick-borne phleboviruses were not considered as human pathogens. After the discovery of severe fever with thrombocytopenia syndrome, interest to tick-borne phleboviruses has increased dramatically. In the last decade, many novel phleboviruses have been reported in different regions. Despite this, the diversity, ecology and pathogenicity of these viruses still remain obscure. The aim of this work was to study the diversity of phleboviruses in ticks collected in several regions of Russia. We used pan-phlebovirus RT-PCR assays based on multiple degenerate primers targeting the polymerase gene fragment. Arthropod specimens were collected from 2005 to 2018. A total of 5901 Ixodidae ticks combined into 1116 pools were screened. A total of 160 specific amplicons were produced. In three cases RT-PCR assays amplified two distinct viruses from same tick pools. Direct sequencing of amplicons and subsequent phylogenetic analysis revealed twelve representatives of divergent phlebovirus groups. Based on the distribution of pairwise nucleotide sequence identity values, a cut-off (88%) was suggested to distinguish tick-borne phleboviruses. According to this provisional criterion, two viruses found here could be termed novel, while ten viruses have been described in previous studies. Detected phleboviruses demonstrated almost perfect specificity to a tick species or, at least, a genus. The same pattern was observed for tick-borne phleboviruses found in different studies around the world. Viruses that grouped together on a phylogenetic tree and differed less than this sequence identity threshold suggested above were hosted by ticks from the same genus.
Collapse
Affiliation(s)
- Alexander S Klimentov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, Moscow 108819, Russia; Gamaleya Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow 123098, Russia.
| | - Oxana A Belova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, Moscow 108819, Russia
| | - Ivan S Kholodilov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, Moscow 108819, Russia
| | - Alexander M Butenko
- Gamaleya Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Liubov A Bespyatova
- Institute of Biology, Karelian Research Centre of RAS, Petrozavodsk 185910, Russia
| | - Sergey V Bugmyrin
- Institute of Biology, Karelian Research Centre of RAS, Petrozavodsk 185910, Russia
| | - Nikita Chernetsov
- Zoological Institute of RAS, St. Petersburg 199034, Russia; Dept. Vertebrate Zoology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Anna Y Ivannikova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, Moscow 108819, Russia
| | - Irina V Kovalchuk
- Office of Rospotrebnadzor in the Stavropol Territory, Stavropol 355008, Russia; Stavropol State Medical University, Stavropol 355017, Russia
| | - Alexander A Nafeev
- Center for Hygiene and Epidemiology in the Ulyanovsk Region, Ulyanovsk 432005, Russia
| | | | - Olga M Pilikova
- Black Sea Anti-Plague Station of Rospotrebnadzor, Novorossiysk 353919, Russia
| | - Alexandra E Polienko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, Moscow 108819, Russia
| | - Kristina A Purmak
- Center for Hygiene and Epidemiology in the Stavropol Kray, Stavropol 355008, Russia
| | - Evgeniya N Romanenko
- Center for Hygiene and Epidemiology in the Stavropol Kray, Stavropol 355008, Russia
| | - Lidiya Iu Romanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov University, Moscow 119991, Russia
| | | | - Nataliya I Solomashchenko
- Stavropol State Medical University, Stavropol 355017, Russia; Center for Hygiene and Epidemiology in the Stavropol Kray, Stavropol 355008, Russia
| | - Anton F Shamsutdinov
- Kazan Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Kazan 420015, Russia
| | - Elena V Vakalova
- Astrakhan Anti-Plague Station of Rospotrebnadzor, Astrakhan 414000, Russia
| | - Alexander N Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119435, Russia
| | - Galina G Karganova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov University, Moscow 119991, Russia
| | - Anatoly P Gmyl
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, Moscow 108819, Russia
| |
Collapse
|
6
|
Ergünay K, Dinçer E, Kar S, Emanet N, Yalçınkaya D, Polat Dinçer PF, Brinkmann A, Hacıoğlu S, Nitsche A, Özkul A, Linton YM. Multiple orthonairoviruses including Crimean-Congo hemorrhagic fever virus, Tamdy virus and the novel Meram virus in Anatolia. Ticks Tick Borne Dis 2020; 11:101448. [PMID: 32723637 DOI: 10.1016/j.ttbdis.2020.101448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023]
Abstract
We conducted orthonairovirus RNA screening of 7043 tick specimens-representing 16 species-collected from various regions of Anatolia. In 602 pools, Crimean-Congo hemorrhagic fever virus (CCHFV) Europe 1 and 2 lineages were detected in seven pools (1.1 %) comprising Hyalomma marginatum, Hyalomma scupense, Rhipicephalus bursa, Rhipicephalus sanguineus sensu lato and Rhipicephalus turanicus ticks. In pools of Hyalomma aegyptium, we detected Tamdy virus (TAMV) and an unclassified nairovirus sequence. Next-generation sequencing revealed complete coding regions of three CCHFV Europe 2 (AP92-like) viruses, TAMV and the novel orthonairovirus, tentatively named herein as Meram virus. We further performed in silico functional analysis of all available CCHFV Europe 2, TAMV, Meram and related virus genomes. The CCHFV Europe 2 viruses possessed several conserved motifs, including those with OTU-like cysteine protease activity. Probable recombinations were identified in L genome segments of CCHFV and TAMV. Through phylogeny reconstruction using individual genome segments, Meram virus emerged as a distinct virus among species within the Orthonairovirus genus. It further exhibited conserved motifs associated with RNA binding, encapsidation, signal peptidase cleavage, post-translational modification, RNA-dependent RNA polymerase and OTU-like activities. Bole tick virus 3 was also detected in two pools with CCHFV reactivity. Hereby, we describe a novel tick-associated orthonairovirus, in a CCHFV-endemic region with confirmed TAMV activity. Human and animal health impact of these viruses need to be addressed.
Collapse
Affiliation(s)
- Koray Ergünay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara 06100, Turkey.
| | - Ender Dinçer
- Dokuz Eylül University, Faculty of Veterinary Medicine, Department of Virology, İzmir 35890, Turkey
| | - Sırrı Kar
- Namık Kemal University, Department of Biology, Tekirdağ 33110, Turkey; University of Texas Medical Branch, Department of Microbiology and Immunology and Galveston National Laboratory, Galveston, GX 77555, USA
| | - Nergis Emanet
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara 06100, Turkey
| | | | - Pelin Fatoş Polat Dinçer
- Dokuz Eylül University, Faculty of Veterinary Medicine, Department of Internal Medicine, İzmir 35890, Turkey
| | - Annika Brinkmann
- Robert Koch Institute, Center for Biological Threats and Special Pathogens 1 (ZBS-1), 13353, Berlin 13352, Germany
| | - Sabri Hacıoğlu
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara 06110, Turkey
| | - Andreas Nitsche
- Robert Koch Institute, Center for Biological Threats and Special Pathogens 1 (ZBS-1), 13353, Berlin 13352, Germany
| | - Aykut Özkul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara 06110, Turkey
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA; Department of Entomology, Smithsonian Institution - National Museum of Natural History, Washington, DC 20560, USA; Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| |
Collapse
|
7
|
Ergünay K. Revisiting new tick-associated viruses: what comes next? Future Virol 2020. [DOI: 10.2217/fvl-2019-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tick-borne viral infections continue to cause diseases with considerable impact on humans, livestock, companion animals and wildlife. Many lack specific therapeutics and vaccines are available for only a few. Tick-borne viruses will continue to emerge, facilitated by anthroponotic factors related to the modern lifestyle. We persistently identify and are obliged to cope with new examples of emerging tick-borne viral diseases and novel viruses today. Many new strains have been detected in vertebrates and arthropods, some causing severe diseases likely to challenge public and veterinary health. This manuscript aims to provide a narrative overview of recently-described tick-associated viruses, with perspectives on changing paradigms in identification, screening and control.
Collapse
Affiliation(s)
- Koray Ergünay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara 06100, Turkey
| |
Collapse
|
8
|
Dinçer E, Hacıoğlu S, Kar S, Emanet N, Brinkmann A, Nitsche A, Özkul A, Linton YM, Ergünay K. Survey and Characterization of Jingmen Tick Virus Variants. Viruses 2019; 11:v11111071. [PMID: 31744216 PMCID: PMC6893481 DOI: 10.3390/v11111071] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022] Open
Abstract
We obtained a Jingmen tick virus (JMTV) isolate, following inoculation of a tick pool with detectable Crimean-Congo hemorrhagic fever virus (CCHFV) RNA. We subsequently screened 7223 ticks, representing 15 species in five genera, collected from various regions in Anatolia and eastern Thrace, Turkey. Moreover, we tested specimens from various patient cohorts (n = 103), and canine (n = 60), bovine (n = 20) and avian specimens (n = 65). JMTV nucleic acids were detected in 3.9% of the tick pools, including those from several tick species from the genera Rhipicephalus and Haemaphysalis, and Hyalomma marginatum, the main vector of CCHFV in Turkey. Phylogenetic analysis supported two separate clades, independent of host or location, suggesting ubiquitous distribution in ticks. JMTV was not recovered from any human, animal or bird specimens tested. Near-complete viral genomes were sequenced from the prototype isolate and from three infected tick pools. Genome topology and functional organization were identical to the members of Jingmen group viruses. Phylogenetic reconstruction of individual viral genome segments and functional elements further supported the close relationship of the strains from Kosovo. We further identified probable recombination events in the JMTV genome, involving closely-related strains from Anatolia or China.
Collapse
Affiliation(s)
- Ender Dinçer
- Research and Application Center, Advanced Technology Education, Mersin University, Mersin 33110, Turkey;
| | - Sabri Hacıoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey; (S.H.)
| | - Sırrı Kar
- Department of Biology, Namık Kemal University, Tekirdağ 33110, Turkey;
- Department of Microbiology and Immunology and Galveston National Laboratory, University of Texas Medical Branch, Galveston, GX 77555, USA
| | - Nergis Emanet
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey;
| | - Annika Brinkmann
- Center for Biological Threats and Special Pathogens 1 (ZBS-1), Robert Koch Institute, 13352 Berlin, Germany; (A.B.); (A.N.)
| | - Andreas Nitsche
- Center for Biological Threats and Special Pathogens 1 (ZBS-1), Robert Koch Institute, 13352 Berlin, Germany; (A.B.); (A.N.)
| | - Aykut Özkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey; (S.H.)
| | - Yvonne-Marie Linton
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, Washington, DC 20560, USA
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA
| | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey;
- Correspondence: ; Tel.: +90-312-305-1560 (ext. 1465); Fax: 90-312-305-2161
| |
Collapse
|