1
|
Ji X, Guo C, Dai Y, Chen L, Chen Y, Wang S, Sun Y. Genomic Characterization and Molecular Evolution of Sapovirus in Children under 5 Years of Age. Viruses 2024; 16:146. [PMID: 38275956 PMCID: PMC10819405 DOI: 10.3390/v16010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Sapovirus (SaV) is a type of gastroenteric virus that can cause acute gastroenteritis. It is highly contagious, particularly among children under the age of 5. In this study, a total of 712 stool samples from children under the age of 5 with acute gastroenteritis were collected. Out of these samples, 28 tested positive for SaV, resulting in a detection rate of 3.93% (28/712). Samples with Ct < 30 were collected for library construction and high-throughput sequencing, resulting in the acquisition of nine complete genomes. According to Blast, eight of them were identified as GI.1, while the remaining one was GI.6. The GI.6 strain sequence reported in our study represents the first submission of the GI.6 strain complete genome sequence from mainland China to the Genbank database, thus filling the data gap in our country. Sequence identity analysis revealed significant nucleotide variations between the two genotypes of SaV and their corresponding prototype strains. Phylogenetic and genetic evolution analyses showed no evidence of recombination events in the obtained sequences. Population dynamics analysis demonstrated potential competitive inhibition between two lineages of GI.1. Our study provides insights into the molecular epidemiological and genetic evolution characteristics of SaV prevalent in the Nantong region of China, laying the foundation for disease prevention and control, as well as pathogen tracing related to SaV in this area.
Collapse
Affiliation(s)
- Xiaolei Ji
- Key Laboratory of Medicine, Nantong Center for Disease Control and Prevention, 189 Gongnongnan Road, Chongchuan District, Nantong 226007, China; (X.J.); (Y.D.); (L.C.); (Y.C.)
| | - Chen Guo
- Department of Laboratory Medicine, Nantong Chongchuan Center for Disease Control and Prevention, 47 Zhongxiu Middle Road, Nantong 226001, China;
| | - Yaoyao Dai
- Key Laboratory of Medicine, Nantong Center for Disease Control and Prevention, 189 Gongnongnan Road, Chongchuan District, Nantong 226007, China; (X.J.); (Y.D.); (L.C.); (Y.C.)
| | - Lu Chen
- Key Laboratory of Medicine, Nantong Center for Disease Control and Prevention, 189 Gongnongnan Road, Chongchuan District, Nantong 226007, China; (X.J.); (Y.D.); (L.C.); (Y.C.)
| | - Yujia Chen
- Key Laboratory of Medicine, Nantong Center for Disease Control and Prevention, 189 Gongnongnan Road, Chongchuan District, Nantong 226007, China; (X.J.); (Y.D.); (L.C.); (Y.C.)
| | - Shifang Wang
- Key Laboratory of Medicine, Nantong Center for Disease Control and Prevention, 189 Gongnongnan Road, Chongchuan District, Nantong 226007, China; (X.J.); (Y.D.); (L.C.); (Y.C.)
| | - Yihua Sun
- Key Laboratory of Medicine, Nantong Center for Disease Control and Prevention, 189 Gongnongnan Road, Chongchuan District, Nantong 226007, China; (X.J.); (Y.D.); (L.C.); (Y.C.)
| |
Collapse
|
2
|
Su L, Mao H, Sun Y, Yan H, Ge Q, Gong L, Zhang Y. The analysis of the genotype of Sapovirus outbreaks in Zhejiang Province. Virol J 2023; 20:268. [PMID: 37974193 PMCID: PMC10655437 DOI: 10.1186/s12985-023-02202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Sapovirus (SaV) infection is increasing globally. Concurrently, several SaV-outbreaks were observed in children of Zhejiang province, China, in recent years, In this study, the genotypes of Sapovirus from seven outbreaks in the Zhejiang province were analysed. METHODS A total of 105 faecal samples were collected from children aged between 4 and 17 years from the Zhejiang Provincial Center for Disease Control and Prevention between October 2021 and February 2023. Genotypes were processed using reverse transcription polymerase chain reaction and Sanger sequencing, while next-generation sequencing was used to generate a complete viral genome. Deduced amino acid sequences were analysed to detect VP1 gene mutations. RESULTS In total, 60 SaV-positive patients were detected at a 57.14% (60/105) positivity rate. Positive rates in the seven outbreaks were: 22.22% (2/9), 15.00% (3/20), 93.10% (27/29), 84.21% (16/19), 28.57% (2/7), 53.33% (8/15) and 33.33% (2/6), respectively. Four genotypes were identified in the seven outbreaks, of which, GI.1 accounted for 14.29% (1/7), GI.2 accounted for 14.29% (1/7), GI.6 and GII.5 accounted for 14.29% (1/7), and GI.6 accounted for 57.14% (4/7). All patients were children and outbreaks predominantly occurred in primary schools and during cold seasons. Additionally, the complete sequence from the GI.6 outbreak strain showed high homology (identity: 99.99%) with few common substitutions (Y300S, N302S and L8M) in VP1 protein. CONCLUSIONS SaV genotype diversity was observed in the seven outbreaks, with GI.6 being the main SaV genotype in Zhejiang province. It demonstrated high homology and may provide a platform for SaV prevention and control measures.
Collapse
Affiliation(s)
- Lingxuan Su
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Provincial, 3399 Binsheng Road, Hangzhou, 310051, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Provincial, 3399 Binsheng Road, Hangzhou, 310051, China
| | - Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Provincial, 3399 Binsheng Road, Hangzhou, 310051, China
| | - Hao Yan
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Provincial, 3399 Binsheng Road, Hangzhou, 310051, China
| | - Qiong Ge
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Provincial, 3399 Binsheng Road, Hangzhou, 310051, China
| | - Liming Gong
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051, China.
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051, China.
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Provincial, 3399 Binsheng Road, Hangzhou, 310051, China.
| |
Collapse
|
3
|
Euller-Nicolas G, Le Mennec C, Schaeffer J, Zeng XL, Ettayebi K, Atmar RL, Le Guyader FS, Estes MK, Desdouits M. Human Sapovirus Replication in Human Intestinal Enteroids. J Virol 2023; 97:e0038323. [PMID: 37039654 PMCID: PMC10134857 DOI: 10.1128/jvi.00383-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
Human sapoviruses (HuSaVs), like human noroviruses (HuNoV), belong to the Caliciviridae family and cause acute gastroenteritis in humans. Since their discovery in 1976, numerous attempts to grow HuSaVs in vitro were unsuccessful until 2020, when these viruses were reported to replicate in a duodenal cancer cell-derived line. Physiological cellular models allowing viral replication are essential to investigate HuSaV biology and replication mechanisms such as genetic susceptibility, restriction factors, and immune responses to infection. In this study, we demonstrate replication of two HuSaV strains in human intestinal enteroids (HIEs) known to support the replication of HuNoV and other human enteric viruses. HuSaVs replicated in differentiated HIEs originating from jejunum, duodenum and ileum, but not from the colon, and bile acids were required. Between 2h and 3 to 6 days postinfection, viral RNA levels increased up from 0.5 to 1.8 log10-fold. Importantly, HuSaVs were able to replicate in HIEs independent of their secretor status and histo-blood group antigen expression. The HIE model supports HuSaV replication and allows a better understanding of host-pathogen mechanisms such as cellular tropism and mechanisms of viral replication. IMPORTANCE Human sapoviruses (HuSaVs) are a frequent but overlooked cause of acute gastroenteritis, especially in children. Little is known about this pathogen, whose successful in vitro cultivation was reported only recently, in a cancer cell-derived line. Here, we assessed the replication of HuSaV in human intestinal enteroids (HIEs), which are nontransformed cultures originally derived from human intestinal stem cells that can be grown in vitro and are known to allow the replication of other enteric viruses. Successful infection of HIEs with two strains belonging to different genotypes of the virus allowed discovery that the tropism of these HuSaVs is restricted to the small intestine, does not occur in the colon, and replication requires bile acid but is independent of the expression of histo-blood group antigens. Thus, HIEs represent a physiologically relevant model to further investigate HuSaV biology and a suitable platform for the future development of vaccines and antivirals.
Collapse
Affiliation(s)
| | - Cécile Le Mennec
- MASAE Microbiologie Aliment Santé Environnement, Ifremer, Nantes, France
| | - Julien Schaeffer
- MASAE Microbiologie Aliment Santé Environnement, Ifremer, Nantes, France
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Marion Desdouits
- MASAE Microbiologie Aliment Santé Environnement, Ifremer, Nantes, France
| |
Collapse
|
4
|
High Prevalence and Diversity of Caliciviruses in a Community Setting Determined by a Metagenomic Approach. Microbiol Spectr 2022; 10:e0185321. [PMID: 35196791 PMCID: PMC8865552 DOI: 10.1128/spectrum.01853-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently carried out a metagenomic study to determine the fecal virome of infants during their first year of life in a semirural community in Mexico. A total of 97 stool samples from nine children were collected starting 2 weeks after birth and monthly thereafter until 12 months of age. In this work, we describe the prevalence and incidence of caliciviruses in this birth cohort. We found that 54 (56%) and 24 (25%) of the samples were positive for norovirus and sapovirus sequence reads detected by next-generation sequencing, respectively. Potential infections were arbitrarily considered when at least 20% of the complete virus genome was determined. Considering only these samples, there were 3 cases per child/year for norovirus and 0.33 cases per child/year for sapovirus. All nine children had sequence reads related to norovirus in at least 2 and up to 10 samples, and 8 children excreted sapovirus sequence reads in 1 and up to 5 samples during the study. The virus in 35 samples could be genotyped. The results showed a high diversity of both norovirus (GI.3[P13], GI.5, GII.4, GII.4[P16], GII.7[P7], and GII.17[P17]) and sapovirus (GI.1, GI.7, and GII.4) in the community. Of interest, despite the frequent detection of caliciviruses in the stools, all children remained asymptomatic during the study. Our results clearly show that metagenomic studies in stools may reveal a detailed picture of the prevalence and diversity of gastrointestinal viruses in the human gut during the first year of life. IMPORTANCE Human caliciviruses are important etiological agents of acute gastroenteritis in children under 5 years of age. Several studies have characterized their association with childhood diarrhea and their presence in nondiarrheal stool samples. In this work, we used a next-generation sequencing approach to determine, in a longitudinal study, the fecal virome of infants during their first year of life. Using this method, we found that caliciviruses can be detected significantly more frequently than previously reported, providing a more detailed picture of the prevalence and genetic diversity of these viruses in the human gut during early life.
Collapse
|
5
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|
6
|
Razizadeh MH, Khatami A, Zarei M. Global molecular prevalence and genotype distribution of Sapovirus in children with gastrointestinal complications: A systematic review and meta-analysis. Rev Med Virol 2021; 32:e2302. [PMID: 34626019 DOI: 10.1002/rmv.2302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
Sapovirus (SaV) is an emerging cause of children gastrointestinal complications such as acute gastroenteritis (AGE). The aim of the present systematic review and meta-analysis was to estimate the global prevalence of the SaV in children and association of infection with SaVs and AGE in children based on case-control studies. Four international databases (PubMed, Scopus, Web of Sciences and Google Scholar) were used to retrieve English-language studies published between January 2000 and December 2020. Comprehensive Meta-Analysis software was applied to estimate the overall prevalence, publication bias and heterogeneity index. The pooled prevalence of SaV infection among children with gastroenteritis was 3.4% [95% confidence interval (CI): 2.9%-3.9%] based on a random-effects meta-analysis. Genogroup I was the dominant genogroup of SaV in children with gastroenteritis [2.2% (95% CI: 1.6%-3.0%)], association analysis showed that SaV was associated with gastroenteritis [OR: 1.843 (95% CI: 1.27-2.66)]. Given the significant prevalence of the virus in children, it is necessary to pay more attention to this situation. Therefore, preventive health measures in children should be a priority.
Collapse
Affiliation(s)
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Zarei
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Adriaenssens EM, Farkas K, McDonald JE, Jones DL, Allison HE, McCarthy AJ. Tracing the fate of wastewater viruses reveals catchment-scale virome diversity and connectivity. WATER RESEARCH 2021; 203:117568. [PMID: 34450465 DOI: 10.1016/j.watres.2021.117568] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The discharge of wastewater-derived viruses in aquatic environments impacts catchment-scale virome composition. To explore this, we used viromic analysis of RNA and DNA virus-like particles to holistically track virus communities entering and leaving wastewater treatment plants and the connecting river catchment system and estuary. We reconstructed >40 000 partial viral genomes into 10 149 species-level groups, dominated by dsDNA and (+)ssRNA bacteriophages (Caudoviricetes and Leviviricetes) and a small number of genomes that could pose a risk to human health. We found substantial viral diversity and geographically distinct virus communities associated with different wastewater treatment plants. River and estuarine water bodies harboured more diverse viral communities in downstream locations, influenced by tidal movement and proximity to wastewater treatment plants. Shellfish and beach sand were enriched in viral communities when compared with the surrounding water, acting as entrapment matrices for virus particles. Extensive phylogenetic analyses of environmental-derived and reference sequences showed the presence of human-associated sapovirus GII in all sample types, multiple rotavirus A strains in wastewater and a diverse set of picorna-like viruses associated with shellfish. We conclude that wastewater-derived viral genetic material is commonly deposited in the environment and can be traced throughout the freshwater-marine continuum of the river catchment, where it is influenced by local geography, weather events and tidal effects. Our data illustrate the utility of viromic analyses for wastewater- and environment-based ecology and epidemiology, and we present a conceptual model for the circulation of all types of viruses in a freshwater catchment.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK; Quadram Institute Bioscience, Norwich, NR4 7UQ, UK.
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK; School of Ocean Sciences, Bangor University, Bangor, LL59 5AB, UK
| | - James E McDonald
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Heather E Allison
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Alan J McCarthy
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
8
|
Molecular Epidemiology of Human Sapovirus Among Children with Acute Gastroenteritis in Western Canada. J Clin Microbiol 2021; 59:e0098621. [PMID: 34288727 DOI: 10.1128/jcm.00986-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives: Sapovirus is increasingly recognized as an important cause of acute gastroenteritis (AGE) worldwide, however studies of prevalence, genetic diversity and strain-specific clinical implications have been scarce. Methods: To fill this knowledge gap, we used reverse transcription real-time PCR and sequencing of the partial major capsid protein VP1 gene to analyze stool specimens and rectal swabs obtained from 3347 children with AGE and 1355 asymptomatic controls (all <18 years old) collected between December 2014 and August 2018 in Alberta, Canada. Results: Sapovirus was identified in 9.5% (317/3347) of the children with AGE and 2.9% of controls. GI.1 (36%) was the predominant genotype identified, followed by GI.2 (18%), GII.5 (8%) and GII.3 (6%). Rare genotypes GII.1, GII.2, GV.1, GII.4, GIV.1, GI.3 and GI.7 were also seen. Sapovirus was detected year-round, peaking during the winter months of November to January. The exception was the 2016-2017 season when GI.2 overtook GI.1 as the predominant strain with a high detection rate persisting into April. We did not observe significant difference in the severity of gastroenteritis by genogroup or genotype. Repeated infection by sapovirus of different genogroups occurred in three controls who developed AGE later. Conclusions: Our data suggests that sapovirus is a common cause of AGE in children with high genetic diversity.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Sapovirus, a genus in the Caliciviridae family alongside norovirus, is increasingly recognized as an important cause of childhood diarrhea. Some challenges exist in our ability to better understand sapovirus infections, including the inability to grow sapovirus in cell culture, which has hindered diagnosis and studies of immunity. Another challenge is that individuals with sapovirus infection are commonly coinfected with other enteric pathogens, complicating our ability to attribute the diarrhea episode to a single pathogen. RECENT FINDINGS Development of molecular methods for sapovirus detection has increased our ability to measure disease prevalence. The prevalence of sapovirus varies between 1 and 17% of diarrhea episodes worldwide, with the highest burden in young children and older adults. Further, epidemiological studies have used novel approaches to account for the presence of coinfections with other enteric pathogens; one multisite cohort study of children under two years of age found that sapovirus had the second-highest attributable incidence among all diarrheal pathogens studied. SUMMARY Especially in settings where rotavirus vaccines have been introduced, efforts to reduce the overall burden of childhood diarrhea should focus on the reduction of sapovirus transmission and disease burden.
Collapse
|
10
|
Cilli A, Luchs A, Morillo SG, Carmona RDCC, Dos Santos FCP, Maeda AY, Primo D, Pacheco GT, Souza EV, Medeiros RS, Timenetsky MDCST. Surveillance and molecular characterization of human sapovirus in patients with acute gastroenteritis in Brazil, 2010 to 2017. J Clin Virol 2021; 140:104844. [PMID: 33971579 DOI: 10.1016/j.jcv.2021.104844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Human sapoviruses (HuSaV) are associated with acute gastroenteritis (AGE), causing sporadic cases and outbreaks in patients worldwide. In Brazil, however, there are few reports describing the prevalence of HuSaV in patients with AGE. OBJECTIVE Describing the diversity of HuSaV in Brazil by detecting and molecularly characterizing HuSaV among patients with AGE during an 8-year period (2010-2017). STUDY DESIGN A total of 3974 stool samples, testing negative for rotavirus (RVA), norovirus (NoV) and human adenovirus (HAdV), were selected and screened for the presence of HuSaV. Nested RT-PCR were performed for a partial region of VP1, sequenced and genetic analyzed for genotyping the positive samples. RESULTS In the current study, the HuSaV prevalence was determined to be 3.7% (149/3974). A higher prevalence, 5.7% (118/2074), was observed in children under 2 years of age. During the surveillance period, 13 outbreaks were detected: 12 outbreaks in children under 3 years old and one outbreak in adults. Among the 149 HuSaV positive cases, 106 samples (71%) were successfully sequenced. The most prevalent genotype found was GI.1 (44.3%), followed by GI.2 (21.7%), GI.3 (3.8%), GI.6 (2.8%), GII.1 (5.7%), GII.2 (8.5%), GII.3 (2.8%), GII.4 (2.8%), GII.5 (5.7%) and GIV.1 (1.9%). Two GIV.1 strains characterized in this study are, to date, the only strains of this genotype reported in Brazil. CONCLUSIONS The present study elucidated the circulation of HuSaV in Brazil and highlight that HuSaV has not assumed an epidemiological importance in the country after the introduction of the RVA vaccine.
Collapse
Affiliation(s)
- Audrey Cilli
- Adolfo Lutz Institute, Virology Centre, Av. Dr Arnaldo, no: 355, São Paulo, SP, Brazil.
| | - Adriana Luchs
- Adolfo Lutz Institute, Virology Centre, Av. Dr Arnaldo, no: 355, São Paulo, SP, Brazil
| | - Simone G Morillo
- Adolfo Lutz Institute, Virology Centre, Av. Dr Arnaldo, no: 355, São Paulo, SP, Brazil
| | | | | | - Adriana Y Maeda
- Adolfo Lutz Institute, Virology Centre, Av. Dr Arnaldo, no: 355, São Paulo, SP, Brazil
| | - Dieli Primo
- Adolfo Lutz Institute, Virology Centre, Av. Dr Arnaldo, no: 355, São Paulo, SP, Brazil
| | - Gabriela T Pacheco
- Adolfo Lutz Institute, Virology Centre, Av. Dr Arnaldo, no: 355, São Paulo, SP, Brazil
| | - Ellen V Souza
- Adolfo Lutz Institute, Virology Centre, Av. Dr Arnaldo, no: 355, São Paulo, SP, Brazil
| | - Roberta S Medeiros
- Adolfo Lutz Institute, Virology Centre, Av. Dr Arnaldo, no: 355, São Paulo, SP, Brazil
| | | |
Collapse
|
11
|
Okitsu S, Khamrin P, Thongprachum A, Hikita T, Kumthip K, Pham NTK, Takanashi S, Hayakawa S, Maneekarn N, Ushijima H. Diversity of human sapovirus genotypes detected in Japanese pediatric patients with acute gastroenteritis, 2014-2017. J Med Virol 2021; 93:4865-4874. [PMID: 33704833 DOI: 10.1002/jmv.26934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/09/2022]
Abstract
Sapovirus (SaV) is one of the pathogens related to acute gastroenteritis (AGE) in adults and children worldwide. This study reported the diversity of SaV genotypes in children with AGE in Japan from July 2014 to June 2017. Of a total of 2259 stool samples tested by using reverse transcription-PCR method and further analyzed by nucleotide sequencing, 114 (5.0%) were positive for SaV and GI.1 (83.3%) was the most predominant genotype, followed by GII.1, GIV.1, GI.2, GI.3, and GII.3 genotypes. Monthly distribution analysis demonstrated two epidemic peaks from July to December 2015 and February to May 2017. However, no detection peak was observed in 2014 and 2016. Phylogenetic analysis of the complete VP1 nucleotide sequences of these GI.1 strains revealed two major clusters of GI.1 and each of which contained GI.1 strains of both 2015 and 2017. This study suggests that the continuous surveillance of SaV is needed to monitor high genetic diversity in Japanese children with AGE.
Collapse
Affiliation(s)
- Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Pattara Khamrin
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sayaka Takanashi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Upfold NS, Luke GA, Knox C. Occurrence of Human Enteric Viruses in Water Sources and Shellfish: A Focus on Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:1-31. [PMID: 33501612 PMCID: PMC7837882 DOI: 10.1007/s12560-020-09456-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/16/2020] [Indexed: 05/02/2023]
Abstract
Enteric viruses are a diverse group of human pathogens which are primarily transmitted by the faecal-oral route and are a major cause of non-bacterial diarrhoeal disease in both developed and developing countries. Because they are shed in high numbers by infected individuals and can persist for a long time in the environment, they pose a serious threat to human health globally. Enteric viruses end up in the environment mainly through discharge or leakage of raw or inadequately treated sewage into water sources such as springs, rivers, dams, or marine estuaries. Human exposure then follows when contaminated water is used for drinking, cooking, or recreation and, importantly, when filter-feeding bivalve shellfish are consumed. The human health hazard posed by enteric viruses is particularly serious in Africa where rapid urbanisation in a relatively short period of time has led to the expansion of informal settlements with poor sanitation and failing or non-existent wastewater treatment infrastructure, and where rural communities with limited or no access to municipal water are dependent on nearby open water sources for their subsistence. The role of sewage-contaminated water and bivalve shellfish as vehicles for transmission of enteric viruses is well documented but, to our knowledge, has not been comprehensively reviewed in the African context. Here we provide an overview of enteric viruses and then review the growing body of research where these viruses have been detected in association with sewage-contaminated water or food in several African countries. These studies highlight the need for more research into the prevalence, molecular epidemiology and circulation of these viruses in Africa, as well as for development and application of innovative wastewater treatment approaches to reduce environmental pollution and its impact on human health on the continent.
Collapse
Affiliation(s)
- Nicole S Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, UK
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
13
|
de Oliveira-Tozetto S, Santiso-Bellón C, Ferrer-Chirivella JM, Navarro-Lleó N, Vila-Vicent S, Rodríguez-Díaz J, Buesa J. Epidemiological and Genetic Characterization of Sapovirus in Patients with Acute Gastroenteritis in Valencia (Spain). Viruses 2021; 13:v13020184. [PMID: 33530573 PMCID: PMC7911121 DOI: 10.3390/v13020184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/16/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023] Open
Abstract
Sapovirus is a common cause of acute gastroenteritis in all age groups. Sapovirus infections are seldom investigated in Spain, and its epidemiology in the country is not well known. The use of molecular diagnostic procedures has allowed a more frequent detection of sapoviruses in patients with diarrhea. A total of 2545 stool samples from patients with acute gastroenteritis attended from June 2018 to February 2020 at the Clinic University Hospital in Valencia, Spain, were analyzed by reverse transcription (RT) and real-time multiplex PCR (RT-PCR) to investigate the etiology of enteric infections. Sapovirus was the second enteric virus detected with a positive rate of 8%, behind norovirus (12.2%) and ahead of rotavirus (7.1%), astrovirus (4.9%) and enteric adenoviruses (2.9%). Most sapovirus infections occurred in infants and young children under 3 years of age (74%) with the highest prevalence in autumn and early winter. Coinfections were found in 25% of the patients with sapovirus diarrhea, mainly with other enteric viruses. Genotyping demonstrated the circulation of seven different genotypes during the study period, with a predominance of genotypes GI.1, GI.2, and GII.1. Phylogenetic analysis showed that genogroup GII strains form a cluster separated from genogroup GI and GV, being genotype GV.1 strains related to genotype GI.1 and GI.2 strains.
Collapse
Affiliation(s)
- Sibele de Oliveira-Tozetto
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain; (S.d.O.-T.); (N.N.-L.); (S.V.-V.); (J.R.-D.)
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain; (S.d.O.-T.); (N.N.-L.); (S.V.-V.); (J.R.-D.)
- Correspondence: (C.S.-B.); (J.B.)
| | - Josep M. Ferrer-Chirivella
- Microbiology Service, INCLIVA Health Research Institute, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Noemi Navarro-Lleó
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain; (S.d.O.-T.); (N.N.-L.); (S.V.-V.); (J.R.-D.)
| | - Susana Vila-Vicent
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain; (S.d.O.-T.); (N.N.-L.); (S.V.-V.); (J.R.-D.)
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain; (S.d.O.-T.); (N.N.-L.); (S.V.-V.); (J.R.-D.)
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain; (S.d.O.-T.); (N.N.-L.); (S.V.-V.); (J.R.-D.)
- Microbiology Service, INCLIVA Health Research Institute, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
- Correspondence: (C.S.-B.); (J.B.)
| |
Collapse
|
14
|
Unveiling Viruses Associated with Gastroenteritis Using a Metagenomics Approach. Viruses 2020; 12:v12121432. [PMID: 33322135 PMCID: PMC7764520 DOI: 10.3390/v12121432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Acute infectious gastroenteritis is an important illness worldwide, especially on children, with viruses accounting for approximately 70% of the acute cases. A high number of these cases have an unknown etiological agent and the rise of next generation sequencing technologies has opened new opportunities for viral pathogen detection and discovery. Viral metagenomics in routine clinical settings has the potential to identify unexpected or novel variants of viral pathogens that cause gastroenteritis. In this study, 124 samples from acute gastroenteritis patients from 2012–2014 previously tested negative for common gastroenteritis pathogens were pooled by age and analyzed by next generation sequencing (NGS) to elucidate unidentified viral infections. The most abundant sequences detected potentially associated to acute gastroenteritis were from Astroviridae and Caliciviridae families, with the detection of norovirus GIV and sapoviruses. Lower number of contigs associated to rotaviruses were detected. As expected, other viruses that may be associated to gastroenteritis but also produce persistent infections in the gut were identified including several Picornaviridae members (EV, parechoviruses, cardioviruses) and adenoviruses. According to the sequencing data, astroviruses, sapoviruses and NoV GIV should be added to the list of viral pathogens screened in routine clinical analysis.
Collapse
|
15
|
Human sapovirus propagation in human cell lines supplemented with bile acids. Proc Natl Acad Sci U S A 2020; 117:32078-32085. [PMID: 33257564 DOI: 10.1073/pnas.2007310117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human sapoviruses (HuSaVs) cause acute gastroenteritis similar to human noroviruses. Although HuSaVs were discovered four decades ago, no HuSaV has been grown in vitro, which has significantly impeded the understanding of viral biology and the development of antiviral strategies. In this study, we identified two susceptible human cell lines, that originated from testis and duodenum, that support HuSaV replication and found that replication requires bile acids. HuSaVs replicated more efficiently in the duodenum cell line, and viral RNA levels increased up to ∼6 log10-fold. We also detected double-stranded RNA, viral nonstructural and structural proteins in the cell cultures, and intact HuSaV particles. We confirmed the infectivity of progeny viruses released into the cell culture supernatants by passaging. These results indicate the successful growth of HuSaVs in vitro. Additionally, we determined the minimum infectious dose and tested the sensitivities of HuSaV GI.1 and GII.3 to heat and ultraviolet treatments. This system is inexpensive, scalable, and reproducible in different laboratories, and can be used to investigate mechanisms of HuSaV replication and to evaluate antivirals and/or disinfection methods for HuSaVs.
Collapse
|
16
|
Sakagami A, Ueki Y, Dapat C, Saito M, Oshitani H. Genetic analysis of sapoviruses detected in outbreaks and sporadic cases of acute gastroenteritis in Miyagi Prefecture, Japan. J Clin Virol 2020; 132:104648. [PMID: 33038625 DOI: 10.1016/j.jcv.2020.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Human sapovirus (SaV) causes sporadic and endemic acute gastroenteritis worldwide. However, little is known about the relationship between the mode of transmission and genetic characteristics of SaV. OBJECTIVE To investigate the molecular characteristics of SaV-associated acute gastroenteritis among sporadic cases, foodborne, and nonfoodborne outbreaks. STUDY DESIGN We performed a systematic review of publications and genetic analysis of SaV in fecal specimens from 98 outpatients with acute gastroenteritis, 32 stool samples from 8 foodborne outbreaks, and 63 stool samples from 23 nonfoodborne outbreaks in Miyagi Prefecture, Japan from 1993 and between 2004 and 2020. Reverse transcription polymerase chain reaction (RT-PCR) was employed for the detection of SaV, and the partial capsid gene was sequenced for genotyping and phylogenetic analysis. RESULTS The overall detection rate of SaV in sporadic cases, foodborne, and nonfoodborne outbreaks was 5.8, 1.7, and 4.3%, respectively. Genotypic analysis revealed GI.1 to be the predominant genotype in sporadic cases (31.5%) and nonfoodborne outbreaks (52.1%), whereas it was not detected in foodborne outbreaks. Some outbreaks occurred following sporadic cases with the same genotype. CONCLUSIONS The distribution of SaV genotypes was different between foodborne outbreaks and other settings. The effective SaV infection control may differ depending on the genomic characteristics.
Collapse
Affiliation(s)
- Akie Sakagami
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, 4-7-2 Saiwai-cho, Miyagino-ku, Sendai, Miyagi 983-0836, Japan
| | - Yo Ueki
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, 4-7-2 Saiwai-cho, Miyagino-ku, Sendai, Miyagi 983-0836, Japan
| | - Clyde Dapat
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
17
|
Genomic Analyses of Human Sapoviruses Detected over a 40-Year Period Reveal Disparate Patterns of Evolution among Genotypes and Genome Regions. Viruses 2020; 12:v12050516. [PMID: 32392864 PMCID: PMC7290424 DOI: 10.3390/v12050516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
Human sapovirus is a causative agent of acute gastroenteritis in all age groups. The use of full-length viral genomes has proven beneficial to investigate evolutionary dynamics and transmission chains. In this study, we developed a full-length genome sequencing platform for human sapovirus and sequenced the oldest available strains (collected in the 1970s) to analyse diversification of sapoviruses. Sequence analyses from five major genotypes (GI.1, GI.2, GII.1, GII.3, and GIV.1) showed limited intra-genotypic diversification for over 20–40 years. The accumulation of amino acid mutations in VP1 was detected for GI.2 and GIV.1 viruses, while having a similar rate of nucleotide evolution to the other genotypes. Differences in the phylogenetic clustering were detected between RdRp and VP1 sequences of our archival strains as well as other reported putative recombinants. However, the lack of the parental strains and differences in diversification among genomic regions suggest that discrepancies in the phylogenetic clustering of sapoviruses could be explained, not only by recombination, but also by disparate nucleotide substitution patterns between RdRp and VP1 sequences. Together, this study shows that, contrary to noroviruses, sapoviruses present limited diversification by means of intra-genotype variation and recombination.
Collapse
|