1
|
Bustos-Hamdan A, Bracho-Gallardo JI, Hamdan-Partida A, Bustos-Martínez J. Repositioning of Antibiotics in the Treatment of Viral Infections. Curr Microbiol 2024; 81:427. [PMID: 39460768 PMCID: PMC11512906 DOI: 10.1007/s00284-024-03948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Drug repurposing, also known as drug repositioning, is a currently tested approach by which new uses are being assigned for already tested drugs. In this case there are antibiotics that are used to combat bacterial infections. However, antibiotics are among the drugs that have been studied for possible antiviral activities. Therefore, the aim of this work is to carry out a review of the studies of antibiotics that could be repositioned for the treatment of viral infections. Among the main antibiotics that have demonstrated antiviral activity are macrolides and glycopeptides. In addition, several antibiotics from the group of tetracyclines, fluoroquinolones, cephalosporins and aminoglycosides have also been studied for their antiviral activity. These antibiotics have demonstrated antiviral activity against both RNA and DNA viruses, including the recent pandemic virus SARS-CoV-2. Some of these antibiotics were selected in addition to its antiviral activity for their immunomodulatory and anti-inflammatory properties. Of the antibiotics that present antiviral activity, in many cases the mechanisms of action are not exactly known. The use of these antibiotics to combat viral infections remains controversial and is not generally accepted, since clinical trials are required to prove its effectiveness. Therefore, there is currently no antibiotic approved as antiviral therapy. Hence is necessary to present the studies carried out on antibiotics that can be repositioned in the future as antiviral drugs.
Collapse
Affiliation(s)
- Anaíd Bustos-Hamdan
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Jair Isidoro Bracho-Gallardo
- Maestria en Biología de la Reproducción Animal, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Aída Hamdan-Partida
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Jaime Bustos-Martínez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico.
| |
Collapse
|
2
|
Zhong M, Wang X, Meng Y, Liao F, Li Z, Zheng W, Wang W, Dai W, Zhang S, Li G. Lithospermic acid inhibits dengue virus infection through binding with envelope proteins. Microb Pathog 2024; 197:107055. [PMID: 39442820 DOI: 10.1016/j.micpath.2024.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The dengue virus has emerged as a global pandemic, highlighting the urgent need for the immediate development of antiviral therapeutics. Lithospermum erythrorhizon, a medicinal plant commonly used in China for various ailments including viral infections, inflammation, rheumatism, and cancer, showed promising antiviral properties in our research. Specifically, both the ethanol extract of Lithospermum erythrorhizon and its active component, lithospermic acid, demonstrated significant inhibitory effects on Dengue virus (DENV) replication in Vero cells, with EC50 values of 6.50 μg/mL(95 % CI: 2.25 to 18.98)and 15.00 μM(95 % CI: 12.13 to 18.07), respectively. Notably, lithospermic acid exhibited potent antiviral activity across multiple cell lines against DENV, impeding virus replication and specifically impeding the expression of viral E and NS3 proteins during the early stages of DENV infection. Experimental assays involving RNase digestion and sucrose density gradient analysis confirmed that lithospermic acid did not directly inactivate DENV but rather interfered with viral processes. Furthermore, the compound was found to bind to the E protein of DENV, effectively inhibiting viral infection and mitigating the cytopathic effects induced by DENV. Collectively, these findings underscore the potential of lithospermic acid as a promising candidate for the development of therapeutic strategies targeting DENV infection.
Collapse
Affiliation(s)
- Ming Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xianyang Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Meng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Feng Liao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zonghui Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenjiang Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenbiao Wang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weiping Dai
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Center for Drug Non-clinical Evaluation and Research, Guangzhou General Pharmaceutical Research Institute Company Limited, China.
| | - Shengming Zhang
- Department of Health Management, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China.
| | - Geng Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Chen Y, Li Y, Lu L, Zou P. Zafirlukast, as a viral inactivator, potently inhibits infection of several flaviviruses, including Zika virus, dengue virus, and yellow fever virus. Antimicrob Agents Chemother 2024; 68:e0016824. [PMID: 38809067 PMCID: PMC11232407 DOI: 10.1128/aac.00168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Zika virus (ZIKV) is one of the mosquito-borne flaviviruses that exhibits a unique tropism to nervous systems and is associated with Guillain-Barre syndrome and congenital Zika syndrome (CZS). Dengue virus (DENV) and yellow fever virus (YFV), the other two mosquito-borne flaviviruses, have also been circulating for a long time and cause severe diseases, such as dengue hemorrhagic fever and yellow fever, respectively. However, there are no safe and effective antiviral drugs approved for the treatment of infections or coinfections of these flaviviruses. Here, we found that zafirlukast, a pregnancy-safe leukotriene receptor antagonist, exhibited potent antiviral activity against infections of ZIKV strains from different lineages in different cell lines, as well as against infections of DENV-2 and YFV 17D. Mechanistic studies demonstrated that zafirlukast directly and irreversibly inactivated these flaviviruses by disrupting the integrity of the virions, leading to the loss of viral infectivity, hence inhibiting the entry step of virus infection. Considering its efficacy against flaviviruses, its safety for pregnant women, and its neuroprotective effect, zafirlukast is a promising candidate for prophylaxis and treatment of infections or coinfections of ZIKV, DENV, and YFV, even in pregnant women.
Collapse
Affiliation(s)
- Yongkang Chen
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuan Li
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Chen Y, Li X, Han F, Ji B, Li Y, Yan J, Wang M, Fan J, Zhang S, Lu L, Zou P. The nucleoside analog 4'-fluorouridine suppresses the replication of multiple enteroviruses by targeting 3D polymerase. Antimicrob Agents Chemother 2024:e0005424. [PMID: 38687016 DOI: 10.1128/aac.00054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Human enteroviruses are the major pathogens causing hand-foot-and-mouth disease in infants and young children throughout the world, and infection with enterovirus is also associated with severe complications, such as aseptic meningitis and myocarditis. However, there are no antiviral drugs available to treat enteroviruses infection at present. In this study, we found that 4'-fluorouridine (4'-FlU), a nucleoside analog with low cytotoxicity, exhibited broad-spectrum activity against infections of multiple enteroviruses with EC50 values at low micromolar levels, including coxsackievirus A10 (CV-A10), CV-A16, CV-A6, CV-A7, CV-B3, enterovirus A71 (EV-A71), EV-A89, EV-D68, and echovirus 6. With further investigation, the results indicated that 4'-FlU directly interacted with the RNA-dependent RNA polymerase of enterovirus, the 3D pol, and impaired the polymerase activity of 3D pol, hence inhibiting viral RNA synthesis and significantly suppressing viral replication. Our findings suggest that 4'-FlU could be promisingly developed as a broad-spectrum direct-acting antiviral agent for anti-enteroviruses therapy.
Collapse
Affiliation(s)
- Yongkang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaohong Li
- Clinical Center for BioTherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fengyang Han
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingjing Yan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Fan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Clinical Center for BioTherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Chen Y, Li X, Wang M, Li Y, Fan J, Yan J, Zhang S, Lu L, Zou P. A cysteine protease inhibitor GC376 displays potent antiviral activity against coxsackievirus infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100203. [PMID: 37767059 PMCID: PMC10520345 DOI: 10.1016/j.crmicr.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Infection with coxsackievirus A10 (CV-A10) can cause hand-foot-mouth disease and is also associated with severe complications, including viral pneumonia, aseptic and viral meningitis. Coxsackievirus infection may also play a role in the pathogenesis of acute myocardial infarction and in the increased risk of type 1 diabetes mellitus in adults. However, there are no approved vaccines or direct antiviral agents available to prevention or treatment of coxsackievirus infection. Here, we reported that GC376 potently inhibited CV-A10 infection in different cell lines without cytotoxicity, significantly suppressed production of viral proteins, and strongly reduced the yields of infectious progeny virions. Further study indicated that GC376, as viral 3C protease inhibitor, had the potential to restrain the cleavage of the viral polyprotein into individually functional proteins, thus suppressed the replication of CV-A10. Furthermore, the drug exhibited antiviral activity against coxsackieviruses of various serotypes including CV-A6, CV-A7 and CV-A16, suggesting that GC376 is a broad-spectrum anti-coxsackievirus inhibitor and the 3C protease is a promising target for developing anti-coxsackievirus agents.
Collapse
Affiliation(s)
- Yongkang Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaohong Li
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuan Li
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Fan
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingjing Yan
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Clinical Center for BioTherapy and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Feng Y, Yang Y, Zou S, Qiu S, Yang H, Hu Y, Lin G, Yao X, Liu S, Zou M. Identification of alpha-linolenic acid as a broad-spectrum antiviral against zika, dengue, herpes simplex, influenza virus and SARS-CoV-2 infection. Antiviral Res 2023:105666. [PMID: 37429528 DOI: 10.1016/j.antiviral.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Zika virus (ZIKV) has garnered global attention due to its association with severe congenital defects including microcephaly. However, there are no licensed vaccines or drugs against ZIKV infection. Pregnant women have the greatest need for treatment, making drug safety crucial. Alpha-linolenic acid (ALA), a polyunsaturated ω-3 fatty acid, has been used as a health-care product and dietary supplement due to its potential medicinal properties. Here, we demonstrated that ALA inhibits ZIKV infection in cells without loss of cell viability. Time-of-addition assay revealed that ALA interrupts the binding, adsorption, and entry stages of ZIKV replication cycle. The mechanism is probably that ALA disrupts the membrane integrity of the virions to release ZIKV RNA, inhibiting viral infectivity. Further examination revealed that ALA inhibits DENV-2, HSV-1, influenza virus and SARS-CoV-2 infection dose-dependently. ALA is a promising broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Yifei Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuting Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuqi Qiu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi Hu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guifen Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Morán Blanco JI, Alvarenga Bonilla JA, Fremont-Smith P, Villar Gómez de Las Heras K. Antihistamines as an early treatment for Covid-19. Heliyon 2023; 9:e15772. [PMID: 37128299 PMCID: PMC10129342 DOI: 10.1016/j.heliyon.2023.e15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
Infection with SARs-COV-2 results in COVID-19 disease. Between March 2020 and August 2021, 468 COVID-19 patients confirmed by PCR or antigen test, in Yepes, Spain, received early treatment with antihistamines, adding azithromycin in selected cases. The primary endpoint is the hospitalization rate of COVID-19 patients, and the secondary endpoints are ICU admission and mortality rates. All endpoints are compared with the official Spanish rates during the time period of the study. There were 20 hospital admissions (hospitalization rate 4,3%), 5 ICU admissions (ICU admission rate 1,1%) and 3 deaths (fatality rate of 0,6%). No patients in the study required follow up treatment, which suggest they did not develop long COVID. Results from this retrospective trail indicate that early treatment of SARS-COV-2 positive patients with antihistamines may reduce the odds of hospitalization (OR: 0.490, CI: 0.313-0.767, p-value: 0.001). Randomized controlled clinical trials are needed to further evaluate the effects of early antihistamine treatment of SARS-CoV-2 patients to prevent hospitalization, ICU admission, mortality and long-covid.
Collapse
Affiliation(s)
- Juan Ignacio Morán Blanco
- Servicio de Salud de Castilla-La Mancha (SESCAM), Toledo, Spain
- Centro de Salud de Yepes, Toledo, Spain
| | | | | | - Karina Villar Gómez de Las Heras
- Servicio de Salud de Castilla-La Mancha (SESCAM), Toledo, Spain
- Gerencia de Urgencias, Emergencias y Transporte Sanitario, Toledo, Spain
- Universidad de Alcalá de Henares, Facultad de Medicina y Ciencias de la Salud, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
8
|
Wald ME, Claus C, Konrath A, Nieper H, Muluneh A, Schmidt V, Vahlenkamp TW, Sieg M. Ivermectin Inhibits the Replication of Usutu Virus In Vitro. Viruses 2022; 14:v14081641. [PMID: 36016263 PMCID: PMC9413757 DOI: 10.3390/v14081641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Usutu virus (USUV) is an emerging mosquito-borne arbovirus within the genus Flavivirus, family Flaviviridae. Similar to the closely related West Nile virus (WNV), USUV infections are capable of causing mass mortality in wild and captive birds, especially blackbirds. In the last few years, a massive spread of USUV was present in the avian population of Germany and other European countries. To date, no specific antiviral therapies are available. Nine different approved drugs were tested for their antiviral effects on the replication of USUV in vitro in a screening assay. Ivermectin was identified as a potent inhibitor of USUV replication in three cell types from different species, such as simian Vero CCL-81, human A549 and avian TME R. A 2- to 7-log10 reduction of the viral titer in the supernatant was detected at a non-cytotoxic concentration of 5 µM ivermectin dependent on the applied cell line. IC50 values of ivermectin against USUV lineage Africa 3 was found to be 0.55 µM in Vero CCL-81, 1.94 µM in A549 and 1.38 µM in TME-R cells. The antiviral efficacy was comparable between the USUV lineages Africa 2, Africa 3 and Europe 3. These findings show that ivermectin may be a candidate for further experimental and clinical studies addressing the treatment of USUV disease, especially in captive birds.
Collapse
Affiliation(s)
- Maria Elisabeth Wald
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.E.W.); (T.W.V.)
| | - Claudia Claus
- Institute of Virology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Andrea Konrath
- Saxon State Laboratory of Health and Veterinary Affairs, 01099 Dresden, Germany; (A.K.); (H.N.); (A.M.)
| | - Hermann Nieper
- Saxon State Laboratory of Health and Veterinary Affairs, 01099 Dresden, Germany; (A.K.); (H.N.); (A.M.)
| | - Aemero Muluneh
- Saxon State Laboratory of Health and Veterinary Affairs, 01099 Dresden, Germany; (A.K.); (H.N.); (A.M.)
| | - Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Thomas Wilhelm Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.E.W.); (T.W.V.)
| | - Michael Sieg
- Institute of Virology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
- Correspondence:
| |
Collapse
|
9
|
Wang X, Chen Y, Shi H, Zou P. Erythromycin Estolate Is a Potent Inhibitor Against HCoV-OC43 by Directly Inactivating the Virus Particle. Front Cell Infect Microbiol 2022; 12:905248. [PMID: 35873167 PMCID: PMC9301004 DOI: 10.3389/fcimb.2022.905248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022] Open
Abstract
In addition to antibacterial effects, macrolide antibiotics exhibit other extensive pharmacological effects, such as anti-inflammatory and antiviral activities. Erythromycin estolate, one of the macrolide antibiotics, was previously investigated to effectively inhibit infections of various flaviviruses including Zika virus, dengue virus, and yellow fever virus, but its antiviral effect against human coronavirus remains unknown. Thus, the current study was designed to evaluate the antiviral efficacy of erythromycin estolate against human coronavirus strain OC43 (HCoV-OC43) and to illustrate the underlying mechanisms. Erythromycin estolate effectively inhibited HCoV-OC43 infection in different cell types and significantly reduced virus titers at safe concentration without cell cytotoxicity. Furthermore, erythromycin estolate was identified to inhibit HCoV-OC43 infection at the early stage and to irreversibly inactivate virus by disrupting the integrity of the viral membrane whose lipid component might be the target of action. Together, it was demonstrated that erythromycin estolate could be a potential therapeutic drug for HCoV-OC43 infection.
Collapse
Affiliation(s)
- Xiaohuan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongkang Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- *Correspondence: Peng Zou,
| |
Collapse
|
10
|
Chen Y, Wang X, Shi H, Zou P. Montelukast Inhibits HCoV-OC43 Infection as a Viral Inactivator. Viruses 2022; 14:v14050861. [PMID: 35632604 PMCID: PMC9143845 DOI: 10.3390/v14050861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses (CoVs) consist of a large group of RNA viruses causing various diseases in humans and in lots of animals. Human coronavirus (HCoV) OC43, the prototype of beta-coronavirus discovered in the 1960s, has been circulating in humans for long time, and infection with other emerging strains of beta-coronavirus (SARS-CoV, SARS-CoV-2, and MERS-CoV) can lead to severe illness and death. In this study, we found that montelukast, a leukotriene receptor antagonist, potently inhibited the infection of HCoV-OC43 in distinct cells in a dose- and time- dependent manner. Additionally, the results showed that montelukast induced release of HCoV-OC43 genomic RNA by disrupting the integrity of the viral lipid membrane, and irreversibly inhibited viral infection. Considering the similarity among HCoV-OC43, MERS-CoV, and SARS-CoV-2, it suggests that montelukast may be a potential candidate for the treatment of human beta-coronavirus infection.
Collapse
Affiliation(s)
| | | | | | - Peng Zou
- Correspondence: ; Tel.: +86-21-3799-0333 (ext. 5273)
| |
Collapse
|
11
|
Yu Y, Si L, Meng Y. Flavivirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:171-197. [PMID: 35412141 DOI: 10.1007/978-981-16-8702-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Flaviviruses, including Dengue virus, Zika virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, cause thousands of deaths and millions of illnesses each year. The large outbreak of ZIKV in 2016 reminds us that flaviviruses can pose a serious threat to human safety and public health as emerging and re-emerging viruses. However, there are no specific drugs approved for the treatment of flavivirus infections. Due to no need to enter the cells, viral entry inhibitors have the unique advantage in suppressing viral infections. Flaviviruses bind to receptors and attach to the cell surface, then enter the endosome in a clathrin-dependent manner and finalizes the viral entry process after fusion with the cell membrane in a low pH environment. Small molecules, antibodies or peptides can inhibit flavivirus entry by targeting the above processes. Here, we focus on flavivirus entry inhibitors with well-defined target and antiviral activity. We hope that our review will provide a theoretical basis for flavivirus treatment and drug research and help to accelerate the clinical application of flavivirus entry inhibitors.
Collapse
Affiliation(s)
- Yufeng Yu
- Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Lulu Si
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Meng
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
12
|
Abdulaziz L, Elhadi E, Abdallah EA, Alnoor FA, Yousef BA. Antiviral Activity of Approved Antibacterial, Antifungal, Antiprotozoal and Anthelmintic Drugs: Chances for Drug Repurposing for Antiviral Drug Discovery. J Exp Pharmacol 2022; 14:97-115. [PMID: 35299994 PMCID: PMC8922315 DOI: 10.2147/jep.s346006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Drug repurposing process aims to identify new uses for the existing drugs to overcome traditional de novo drug discovery and development challenges. At the same time, as viral infections became a serious threat to humans and the viral organism itself has a high ability to mutate genetically, and due to serious adverse effects that result from antiviral drugs, there are crucial needs for the discovery of new antiviral drugs, and to identify new antiviral effects for the exciting approved drugs towards different types of viral infections depending on the observed antiviral activity in preclinical studies or clinical findings is one of the approaches to counter the viral infections problems. This narrative review article summarized mainly the published preclinical studies that evaluated the antiviral activity of drugs that are approved and used mainly as antibacterial, antifungal, antiprotozoal, and anthelmintic drugs, and the preclinical studies included the in silico, in vitro, and in vivo findings, additionally some clinical observations were also included while trying to relate them to the preclinical findings. Finally, the structure used for writing about the antiviral activity of the drugs was according to the families of the viruses used in the studies to form a better image for the target of antiviral activity of different drugs in the different kinds of viruses and to relate between the antiviral activity of the drugs against different strains of viruses within the same viral family.
Collapse
Affiliation(s)
- Leena Abdulaziz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
| | - Esraa Elhadi
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Ejlal A Abdallah
- Department of Pharmacology and Pharmacy Practice, Faculty of Pharmacy, Sudan University of Science and Technology, Khartoum, 11111, Sudan
| | - Fadlalbaseer A Alnoor
- Department of Pharmacology, Faculty of Pharmacy, National University, Khartoum, 11111, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, 11111, Sudan
- Correspondence: Bashir A Yousef, Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum, 11111, Sudan, Tel +249 912932418, Fax +249 183780696, Email
| |
Collapse
|
13
|
Morán Blanco JI, Alvarenga Bonilla JA, Homma S, Suzuki K, Fremont-Smith P, Villar Gómez de Las Heras K. Antihistamines and azithromycin as a treatment for COVID-19 on primary health care - A retrospective observational study in elderly patients. Pulm Pharmacol Ther 2021; 67:101989. [PMID: 33465426 PMCID: PMC7833340 DOI: 10.1016/j.pupt.2021.101989] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Between March and April 2020, 84 elderly patients with suspected COVID-19 living in two nursing homes of Yepes, Toledo (Spain) were treated early with antihistamines (dexchlorpheniramine, cetirizine or loratadine), adding azithromycin in the 25 symptomatic cases. The outcomes are retrospectively reported. The primary endpoint is the fatality rate of COVID-19. The secondary endpoints are the hospital and ICU admission rates. Endpoints were compared with the official Spanish rates for the elderly. The mean age of our population was 85 and 48% were over 80 years old. No hospital admissions, deaths, nor adverse drug effects were reported in our patient population. By the end of June, 100% of the residents had positive serology for COVID-19. Although clinical trials are needed to determine the efficacy of both drugs in the treatment of COVID-19, this analysis suggests that primary care diagnosis and treatment with antihistamines, plus azithromycin in selected cases, may treat COVID-19 and prevent progression to severe disease in elderly patients.
Collapse
Affiliation(s)
- Juan Ignacio Morán Blanco
- Servicio de Salud de Castilla-La Mancha (SESCAM), Toledo, Spain; Centro de Salud de Yepes, Av. Santa Reliquia, 26, 45313, Yepes, Toledo, Spain
| | - Judith A Alvarenga Bonilla
- Servicio de Salud de Castilla-La Mancha (SESCAM), Toledo, Spain; Centro de Salud de Yepes, Av. Santa Reliquia, 26, 45313, Yepes, Toledo, Spain
| | - Sakae Homma
- Department of Advanced and Integrated Interstitial Lung Diseases Research, School of Medicine, Toho University, Ota-ku, Tokyo, 143-8540, Japan
| | - Kazuo Suzuki
- Asia International Institute of Infectious Disease Control, and Department of Health Protection, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo, 173-8605, Japan
| | | | | |
Collapse
|
14
|
Poddighe D, Aljofan M. Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond. ACTA ACUST UNITED AC 2020; 28:2040206620961712. [PMID: 32972196 PMCID: PMC7522830 DOI: 10.1177/2040206620961712] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrolides are a large group of antibiotics characterised by the presence of a macro-lactone ring of variable size. The prototype of macrolide antibiotics, erythromycin was first produced by Streptomyces and associated species more than half a century ago; other related drugs were developed. These drugs have been shown to have several pharmacological properties: in addition to their antibiotic activity, they possess some anti-inflammatory properties and have been also considered against non-bacterial infections. In this review, we analysed the available clinical evidences regarding the potential anti-viral activity of macrolides, by focusing on erythromycin, clarithromycin and azithromycin. Overall, there is no significant evidences so far that macrolides might have a direct benefit on most of viral infections considered in this review (RSV, Influenza, coronaviruses, Ebola and Zika viruses). However, their clinical benefit cannot be ruled out without further and focused clinical studies. Macrolides may improve the clinical course of viral respiratory infections somehow, at least through indirect mechanisms relying on some and variable anti-inflammatory and/or immunomodulatory effects, in addition to their well-known antibacterial activity.
Collapse
Affiliation(s)
- Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan City, Kazakhstan
| | - Mohamad Aljofan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nur-Sultan City, Kazakhstan
| |
Collapse
|
15
|
Chen Y, Li Y, Wang X, Zou P. Montelukast, an Anti-asthmatic Drug, Inhibits Zika Virus Infection by Disrupting Viral Integrity. Front Microbiol 2020; 10:3079. [PMID: 32082265 PMCID: PMC7002393 DOI: 10.3389/fmicb.2019.03079] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022] Open
Abstract
The association of Zika virus (ZIKV) infection and severe complications including neurological sequelae especially fetal microcephaly has aroused global attentions since its outbreak in 2015. Currently, there are no vaccines or therapeutic drugs clinically approved for treatments of ZIKV infection, however. And the drugs used for treating ZIKV in pregnant women require a higher safety profile. Here, we identified an anti-asthmatic drug, montelukast, which is of safety profile for pregnant women and exhibited antiviral efficacy against ZIKV infection in vitro and in vivo. And we showed that montelukast could disrupt the integrity of the virions to release the viral genomic RNA, hence irreversibly inhibiting viral infectivity. In consideration of the neuro-protective activity that montelukast possessed, which was previously reported, it is promising that montelukast could be used for patients with ZIKV infection, particularly for pregnant women.
Collapse
Affiliation(s)
| | | | | | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|