1
|
Obermeier PE, Buder SC, Hillen U. Pockenvirusinfektionen in der Dermatologie: Poxvirus infections in dermatology - the neglected, the notable, and the notorious. J Dtsch Dermatol Ges 2024; 22:56-96. [PMID: 38212918 DOI: 10.1111/ddg.15257_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/20/2023] [Indexed: 01/13/2024]
Abstract
ZusammenfassungDie Familie Poxviridae umfasst derzeit 22 Gattungen, die Wirbeltiere infizieren können. Humanpathogene Pockenviren gehören den Gattungen Ortho‐, Para‐, Mollusci‐ und Yatapoxvirus an. Bis zur Eradikation der Variola vera im Jahr 1979 waren die Pocken, im Volksmund auch Blattern genannt, eine schwerwiegende Gesundheitsbedrohung für die Bevölkerung. Noch heute sind Dermatologen mit zahlreichen Pockenvirusinfektionen konfrontiert, wie den Bauernhofpocken, die als Zoonosen nach Tierkontakten in ländlichen Gebieten oder nach Massenversammlungen auftreten können. In den Tropen können Erkrankungen durch Tanapox‐ oder Vaccinia‐Viren zu den Differenzialdiagnosen gehören. Dellwarzen sind weltweit verbreitet und werden in bestimmten Fällen als sexuell übertragbare Pockenvirusinfektion angesehen. In jüngster Zeit hatten sich Mpox (Affenpocken) zu einer gesundheitlichen Notlage von internationaler Tragweite entwickelt, die eine rasche Identifizierung und angemessene Behandlung durch Dermatologen und Infektiologen erfordert. Fortschritte und neue Erkenntnisse über Epidemiologie, Diagnose, klinische Manifestationen und Komplikationen sowie Behandlung und Prävention von Pockenvirusinfektionen erfordern ein hohes Maß an Fachwissen und interdisziplinärer Zusammenarbeit in den Bereichen Virologie, Infektiologie und Dermatologie. Dieser CME‐Artikel bietet einen aktualisierten systematischen Überblick, um praktizierende Dermatologen bei der Identifizierung, Differenzialdiagnose und Behandlung klinisch relevanter Pockenvirusinfektionen zu unterstützen.
Collapse
Affiliation(s)
- Patrick E Obermeier
- Klinik für Dermatologie und Venerologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
- Abteilung für Infektionskrankheiten, Vaccine Safety Initiative, Berlin, Deutschland
| | - Susanne C Buder
- Klinik für Dermatologie und Venerologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
- Konsiliarlabor für Gonokokken, Fachgebiet Sexuell übertragbare bakterielle Krankheitserreger, Robert Koch-Institut, Berlin, Deutschland
| | - Uwe Hillen
- Klinik für Dermatologie und Venerologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| |
Collapse
|
2
|
Obermeier PE, Buder SC, Hillen U. Poxvirus infections in dermatology - the neglected, the notable, and the notorious. J Dtsch Dermatol Ges 2024; 22:56-93. [PMID: 38085140 DOI: 10.1111/ddg.15257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/20/2023] [Indexed: 12/22/2023]
Abstract
The family Poxviridae currently comprises 22 genera that infect vertebrates. Of these, members of the Ortho-, Para-, Mollusci- and Yatapoxvirus genera have been associated with human diseases of high clinical relevance in dermatology. Historically, smallpox had been a notorious health threat until it was declared eradicated by the World Health Organization in 1979. Today, dermatologists are confronted with a variety of poxviral infections, such as farmyard pox, which occurs as a zoonotic infection after contact with animals. In the tropics, tanapox or vaccinia may be in the differential diagnosis as neglected tropical dermatoses. Molluscum contagiosum virus infection accounts for significant disease burden worldwide and is classified as a sexually transmitted infection in certain scenarios. Recently, mpox (monkeypox) has emerged as a public health emergency of international concern, requiring rapid recognition and appropriate management by dermatologists and infectious disease specialists. Advances and new insights into the epidemiology, diagnosis, clinical manifestations and complications, treatment, and prevention of poxviral infections require a high level of expertise and interdisciplinary skills from healthcare professionals linking virology, infectious diseases, and dermatology. This CME article provides a systematic overview and update to assist the practicing dermatologist in the identification, differential diagnosis, and management of poxviral infections.
Collapse
Affiliation(s)
- Patrick E Obermeier
- Department of Dermatology and Venereology, Vivantes Hospital Neukölln, Berlin, Germany
- Department of Infectious Diseases, Vaccine Safety Initiative, Berlin, Germany
| | - Susanne C Buder
- Department of Dermatology and Venereology, Vivantes Hospital Neukölln, Berlin, Germany
- German Reference Laboratory for Gonococci, Unit Sexually Transmitted Bacterial Pathogens, Department for Infectious Diseases, Robert Koch-Institute, Berlin, Germany
| | - Uwe Hillen
- Department of Dermatology and Venereology, Vivantes Hospital Neukölln, Berlin, Germany
| |
Collapse
|
3
|
Arz C, Król N, Imholt C, Jeske K, Rentería-Solís Z, Ulrich RG, Jacob J, Pfeffer M, Obiegala A. Spotted Fever Group Rickettsiae in Ticks and Small Mammals from Grassland and Forest Habitats in Central Germany. Pathogens 2023; 12:933. [PMID: 37513780 PMCID: PMC10386184 DOI: 10.3390/pathogens12070933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Rickettsiae of the spotted fever group (SFG) are zoonotic tick-borne pathogens. Small mammals are important hosts for the immature life stages of two of the most common tick species in Europe, Ixodes ricinus and Dermacentor reticulatus. These hosts and vectors can be found in diverse habitats with different vegetation types like grasslands and forests. To investigate the influence of environmental and individual factors on Rickettsia prevalence, this study aimed to analyse the prevalence of SFG rickettsiae in ticks and small mammals in different small-scale habitats in central Germany for the first time. Small mammals of ten species and ticks of two species were collected from grasslands and forests in the Hainich-Dün region, central Germany. After species identification, DNA samples from 1098 ticks and ear snips of 1167 small mammals were screened for Rickettsia DNA by qPCR targeting the gltA gene. Positive samples were retested by conventional PCR targeting the ompB gene and sequencing. Rickettsia DNA was detected in eight out of ten small mammal species. Small mammal hosts from forests (14.0%) were significantly more often infected than those from grasslands (4.4%) (p < 0.001). The highest prevalence was found in the mostly forest-inhabiting genus Apodemus (14.8%) and the lowest in Microtus (6.6%), which inhabits grasslands. The prevalence was higher in D. reticulatus (46.3%) than in the I. ricinus complex (8.6%). Adult ticks were more often infected than nymphs (p = 0.0199). All sequenced rickettsiae in I. ricinus complex ticks were R. helvetica, and the ones in D. reticulatus were R. raoultii. Unlike adults, questing nymphs have had only one blood meal, which explains the higher prevalence in I. ricinus adults. Interestingly, habitat type did influence infection probability in small mammals, but did not in ticks. A possible explanation may be the high prevalence in Apodemus flavicollis and A. sylvaticus which were more abundant in the forest.
Collapse
Affiliation(s)
- Charlotte Arz
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Christian Imholt
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany
| | - Kathrin Jeske
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Zaida Rentería-Solís
- Institute for Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 35, 04103 Leipzig, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Jens Jacob
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Bruneau RC, Tazi L, Rothenburg S. Cowpox Viruses: A Zoo Full of Viral Diversity and Lurking Threats. Biomolecules 2023; 13:325. [PMID: 36830694 PMCID: PMC9953750 DOI: 10.3390/biom13020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Cowpox viruses (CPXVs) exhibit the broadest known host range among the Poxviridae family and have caused lethal outbreaks in various zoo animals and pets across 12 Eurasian countries, as well as an increasing number of human cases. Herein, we review the history of how the cowpox name has evolved since the 1700s up to modern times. Despite early documentation of the different properties of CPXV isolates, only modern genetic analyses and phylogenies have revealed the existence of multiple Orthopoxvirus species that are currently constrained under the CPXV designation. We further chronicle modern outbreaks in zoos, domesticated animals, and humans, and describe animal models of experimental CPXV infections and how these can help shaping CPXV species distinctions. We also describe the pathogenesis of modern CPXV infections in animals and humans, the geographic range of CPXVs, and discuss CPXV-host interactions at the molecular level and their effects on pathogenicity and host range. Finally, we discuss the potential threat of these viruses and the future of CPXV research to provide a comprehensive review of CPXVs.
Collapse
Affiliation(s)
| | | | - Stefan Rothenburg
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Genomic Sequencing and Phylogenomics of Cowpox Virus. Viruses 2022; 14:v14102134. [PMID: 36298689 PMCID: PMC9611595 DOI: 10.3390/v14102134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cowpox virus (CPXV; genus Orthopoxvirus; family Poxviridae) is the causative agent of cowpox, a self-limiting zoonotic infection. CPXV is endemic in Eurasia, and human CPXV infections are associated with exposure to infected animals. In the Fennoscandian region, five CPXVs isolated from cats and humans were collected and used in this study. We report the complete sequence of their genomes, which ranged in size from 220–222 kbp, containing between 215 and 219 open reading frames. The phylogenetic analysis of 87 orthopoxvirus strains, including the Fennoscandian CPXV isolates, confirmed the division of CPXV strains into at least five distinct major clusters (CPXV-like 1, CPXV-like 2, VACV-like, VARV-like and ECTV-Abatino-like) and can be further divided into eighteen sub-species based on the genetic and patristic distances. Bayesian time-scaled evolutionary history of CPXV was reconstructed employing concatenated 62 non-recombinant conserved genes of 55 CPXV. The CPXV evolution rate was calculated to be 1.65 × 10−5 substitution/site/year. Our findings confirmed that CPXV is not a single species but a polyphyletic assemblage of several species and thus, a reclassification is warranted.
Collapse
|
6
|
MacNeill AL. Comparative Pathology of Zoonotic Orthopoxviruses. Pathogens 2022; 11:pathogens11080892. [PMID: 36015017 PMCID: PMC9412692 DOI: 10.3390/pathogens11080892] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
This review provides a brief history of the impacts that a human-specific Orthopoxvirus (OPXV), Variola virus, had on mankind, recalls how critical vaccination was for the eradication of this disease, and discusses the consequences of discontinuing vaccination against OPXV. One of these consequences is the emergence of zoonotic OPXV diseases, including Monkeypox virus (MPXV). The focus of this manuscript is to compare pathology associated with zoonotic OPXV infection in veterinary species and in humans. Efficient recognition of poxvirus lesions and other, more subtle signs of disease in multiple species is critical to prevent further spread of poxvirus infections. Additionally included are a synopsis of the pathology observed in animal models of MPXV infection, the recent spread of MPXV among humans, and a discussion of the potential for this virus to persist in Europe and the Americas.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Król N, Obiegala A, Imholt C, Arz C, Schmidt E, Jeske K, Ulrich RG, Rentería-Solís Z, Jacob J, Pfeffer M. Diversity of Borrelia burgdorferi sensu lato in ticks and small mammals from different habitats. Parasit Vectors 2022; 15:195. [PMID: 35672762 PMCID: PMC9175456 DOI: 10.1186/s13071-022-05326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ixodid ticks are important vectors for zoonotic pathogens, with Ixodes ricinus being the most important in Europe. Rodents are hosts of immature life stages of I. ricinus ticks and are considered main reservoirs for tick-borne pathogens, e.g. Borrelia burgdorferi. The aim of this study was to analyse the prevalence as well as genospecies and sequence type (ST) diversity of Borrelia burgdorferi sensu lato in ticks and small mammals from central Germany and to elaborate on the influence of environmental and/or individual host and vector factors on Borrelia prevalence. METHODS After species identification, 1167 small mammal skin samples and 1094 ticks from vegetation were screened by B. burgdorferi sensu lato real-time polymerase chain reaction, and positive samples were characterized by multilocus sequence typing. Generalized linear (mixed) models were used to estimate how seasonality, small mammal species/tick life stage and habitat affect individual infection status. RESULTS In total, 10 small mammal species and three tick species, Ixodes ricinus, Ixodes inopinatus (both considered members of the I. ricinus complex) and Dermacentor reticulatus, were investigated. Borrelia DNA was detected in eight host species, i.e. the striped field mouse (Apodemus agrarius), the yellow-necked field mouse (Apodemus flavicollis), the wood mouse (Apodemus sylvaticus), the water vole (Arvicola amphibius), the bank vole (Clethrionomys glareolus), the field vole (Microtus agrestis), the common vole (Microtus arvalis), and the common shrew (Sorex araneus). Two species were Borrelia negative, the greater white-toothed shrew (Crocidura russula) and the pygmy shrew (Sorex minutus). The average prevalence was 6.2%, with two genospecies detected, Borrelia afzelii and Borrelia garinii, and at least three STs that had not been previously reported in small mammals. Borrelia prevalence in small mammals did not differ between seasons. Six genospecies of Borrelia-Borrelia afzelii, Borrelia valaisiana, Borrelia garinii, Borrelia lusitaniae, Borrelia spielmanii, and Borrelia burgdorferi sensu stricto-and 25 STs of Borrelia, of which 12 have not been previously described at all and five have not been previously reported in Germany, were detected in 13% of I. ricinus complex ticks. Prevalence was highest in adult females (25.3%) and lowest in nymphs (11.4%). Prevalence was significantly higher in ticks from grassland (16.8%) compared to forests (11.4%). CONCLUSIONS The high level of small mammal diversity in this region of Germany seems to be reflected in a wide variety of genospecies and STs of B. burgdorferi.
Collapse
Affiliation(s)
- Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Christian Imholt
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161, Münster, Germany
| | - Charlotte Arz
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Elisabeth Schmidt
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Kathrin Jeske
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Rainer Günter Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Zaida Rentería-Solís
- Institute for Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - Jens Jacob
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161, Münster, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany.
| |
Collapse
|
8
|
Diaz-Cánova D, Moens UL, Brinkmann A, Nitsche A, Okeke MI. Genomic Sequencing and Analysis of a Novel Human Cowpox Virus With Mosaic Sequences From North America and Old World Orthopoxvirus. Front Microbiol 2022; 13:868887. [PMID: 35592007 PMCID: PMC9112427 DOI: 10.3389/fmicb.2022.868887] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopoxviruses (OPXVs) not only infect their natural hosts, but some OPXVs can also cause disease in humans. Previously, we partially characterized an OPXV isolated from an 18-year-old male living in Northern Norway. Restriction enzyme analysis and partial genome sequencing characterized this virus as an atypical cowpox virus (CPXV), which we named CPXV-No-H2. In this study, we determined the complete genome sequence of CPXV-No-H2 using Illumina and Nanopore sequencing. Our results showed that the whole CPXV-No-H2 genome is 220,276 base pairs (bp) in length, with inverted terminal repeat regions of approximately 7 kbp, containing 217 predicted genes. Seventeen predicted CPXV-No-H2 proteins were most similar to OPXV proteins from the Old World, including Ectromelia virus (ECTV) and Vaccinia virus, and North America, Alaskapox virus (AKPV). CPXV-No-H2 has a mosaic genome with genes most similar to other OPXV genes, and seven potential recombination events were identified. The phylogenetic analysis showed that CPXV-No-H2 formed a separate clade with the German CPXV isolates CPXV_GerMygEK938_17 and CPXV_Ger2010_MKY, sharing 96.4 and 96.3% nucleotide identity, respectively, and this clade clustered closely with the ECTV-OPXV Abatino clade. CPXV-No-H2 is a mosaic virus that may have arisen out of several recombination events between OPXVs, and its phylogenetic clustering suggests that ECTV-Abatino-like cowpox viruses form a distinct, new clade of cowpox viruses.
Collapse
Affiliation(s)
- Diana Diaz-Cánova
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ugo L Moens
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Annika Brinkmann
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Malachy Ifeanyi Okeke
- Section of Biomedical Sciences, Department of Natural and Environmental Sciences, School of Arts and Sciences, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
9
|
Essbauer S, Baumann K, Schlegel M, Faulde MK, Lewitzki J, Sauer SC, Frangoulidis D, Riehm JM, Dobler G, Teifke JP, Meyer H, Ulrich RG. Small Mammals as Reservoir for Zoonotic Agents in Afghanistan. Mil Med 2021; 187:e189-e196. [PMID: 33462624 DOI: 10.1093/milmed/usab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Rodents and other small mammals can serve as reservoirs for a large number of zoonotic pathogens. A higher risk of infection with rodent-borne pathogens exists for humans with direct contact to rodents and/or their excretions, e.g., soldiers in operation areas. To date, little is known about endemic human pathogenic disease agents that are naturally associated with small mammals in Afghanistan. The aim of this study was to screen abundant rodents and insectivores collected from 2009 to 2012 in four field camps of the German Federal Armed Forces (Bundeswehr) in Northern Afghanistan for the presence of different pathogens. MATERIALS AND METHODS Isolated nucleic acids from ear pinna were screened by real-time PCR for spotted fever group (SFG) rickettsiae and from liver samples for Francisella spp., Coxiella burnetii, Brucella spp., Yersinia pestis, and poxvirus. Chest cavity lavage (CCL) samples were tested for antibodies against SFG and typhus group (TG) rickettsiae, as well as against flaviviruses using an indirect immunofluorescence assay. RESULTS Rickettsial DNA was detected in 7/750 (1%) ear pinna samples with one being identified as Rickettsia conorii. Antibodies against SFG rickettsiae were detected in 15.3% (n = 67/439) of the small mammals; positive samples were only from house mice (Mus musculus). Antibodies against TG rickettsiae were found in 8.2% (n = 36/439) of the samples, with 35 from house mice and one from gray dwarf hamster (Cricetulus migratorius). Flavivirus-reactive antibodies were detected in 2.3% (n = 10/439) of the investigated CCL samples; again positive samples were exclusively identified in house mice. All 199 investigated liver-derived DNA preparations were negative in the Francisella spp., C. burnetii, Brucella spp., Y. pestis, and poxvirus-specific PCRs. CONCLUSIONS Further investigations will have to prove the potential value of rodents in army camps as sentinel animals.
Collapse
Affiliation(s)
- Sandra Essbauer
- Department Virology & Rickettsiology, Bundeswehr Institute of Microbiology, Munich 80937, Germany
| | - Kathrin Baumann
- Department Virology & Rickettsiology, Bundeswehr Institute of Microbiology, Munich 80937, Germany.,Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald 17493, Germany
| | - Mathias Schlegel
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald 17493, Germany.,Seramun diagnostics GmbH, Heidesee 15754, Germany
| | - Michael K Faulde
- IUD II 5, Bundesministerium für Verteidigung (Federal Ministry of Defense), Bonn 53123, Germany
| | - Jens Lewitzki
- Landratsamt Weilheim-Schongau Veterinäramt, Weilheim in Oberbayern 82362, Germany
| | - Sabine C Sauer
- Bundeswehr Medical Academy, Military Medical Sciences and Capability Development Directorate, München 80939, Germany
| | - Dimitrios Frangoulidis
- Department Virology & Rickettsiology, Bundeswehr Institute of Microbiology, Munich 80937, Germany.,Bundeswehr Medical Service Headquarters VI-2, Medical Intelligence & Information (MI2), Munich 80637, Germany
| | - J M Riehm
- Department of Veterinary Bacteriology, Bavarian Health and Food Safety Authority, Oberschleissheim 85764, Germany
| | - Gerhard Dobler
- Department Virology & Rickettsiology, Bundeswehr Institute of Microbiology, Munich 80937, Germany
| | - Jens P Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald 17493, Germany
| | - Hermann Meyer
- Department Virology & Rickettsiology, Bundeswehr Institute of Microbiology, Munich 80937, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald 17493, Germany
| |
Collapse
|
10
|
Isolation and characterization of new Puumala orthohantavirus strains from Germany. Virus Genes 2020; 56:448-460. [PMID: 32328924 PMCID: PMC7329759 DOI: 10.1007/s11262-020-01755-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/03/2020] [Indexed: 12/28/2022]
Abstract
Orthohantaviruses are re-emerging rodent-borne pathogens distributed all over the world. Here, we report the isolation of a Puumala orthohantavirus (PUUV) strain from bank voles caught in a highly endemic region around the city Osnabrück, north-west Germany. Coding and non-coding sequences of all three segments (S, M, and L) were determined from original lung tissue, after isolation and after additional passaging in VeroE6 cells and a bank vole-derived kidney cell line. Different single amino acid substitutions were observed in the RNA-dependent RNA polymerase (RdRP) of the two stable PUUV isolates. The PUUV strain from VeroE6 cells showed a lower titer when propagated on bank vole cells compared to VeroE6 cells. Additionally, glycoprotein precursor (GPC)-derived virus-like particles of a German PUUV sequence allowed the generation of monoclonal antibodies that allowed the reliable detection of the isolated PUUV strain in the immunofluorescence assay. In conclusion, this is the first isolation of a PUUV strain from Central Europe and the generation of glycoprotein-specific monoclonal antibodies for this PUUV isolate. The obtained virus isolate and GPC-specific antibodies are instrumental tools for future reservoir host studies.
Collapse
|
11
|
Weber S, Jeske K, Ulrich RG, Imholt C, Jacob J, Beer M, Hoffmann D. In Vivo Characterization of a Bank Vole-Derived Cowpox Virus Isolate in Natural Hosts and the Rat Model. Viruses 2020; 12:v12020237. [PMID: 32093366 PMCID: PMC7077282 DOI: 10.3390/v12020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/04/2022] Open
Abstract
Cowpox virus (CPXV) belongs to the genus Orthopoxvirus in the Poxviridae family and is endemic in western Eurasia. Based on seroprevalence studies in different voles from continental Europe and UK, voles are suspected to be the major reservoir host. Recently, a CPXV was isolated from a bank vole (Myodes glareolus) in Germany that showed a high genetic similarity to another isolate originating from a Cotton-top tamarin (Saguinus oedipus). Here we characterize this first bank vole-derived CPXV isolate in comparison to the related tamarin-derived isolate. Both isolates grouped genetically within the provisionally called CPXV-like 3 clade. Previous phylogenetic analysis indicated that CPXV is polyphyletic and CPXV-like 3 clade represents probably a different species if categorized by the rules used for other orthopoxviruses. Experimental infection studies with bank voles, common voles (Microtusarvalis) and Wistar rats showed very clear differences. The bank vole isolate was avirulent in both common voles and Wistar rats with seroconversion seen only in the rats. In contrast, inoculated bank voles exhibited viral shedding and seroconversion for both tested CPXV isolates. In addition, bank voles infected with the tamarin-derived isolate experienced a marked weight loss. Our findings allow for the conclusion that CPXV isolates might differ in their replication capacity in different vole species and rats depending on their original host. Moreover, the results indicate host-specific differences concerning CPXV-specific virulence. Further experiments are needed to identify individual virulence and host factors involved in the susceptibility and outcome of CPXV-infections in the different reservoir hosts.
Collapse
Affiliation(s)
- Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
| | - Kathrin Jeske
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Christian Imholt
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany; (C.I.); (J.J.)
| | - Jens Jacob
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany; (C.I.); (J.J.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Correspondence: (M.B.); (D.H.); Tel.: +49-38351-7-1200 (M.B.); +49-38351-7-1627 (D.H.)
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Correspondence: (M.B.); (D.H.); Tel.: +49-38351-7-1200 (M.B.); +49-38351-7-1627 (D.H.)
| |
Collapse
|