2
|
Miranda MNS, Pingarilho M, Pimentel V, Torneri A, Seabra SG, Libin PJK, Abecasis AB. A Tale of Three Recent Pandemics: Influenza, HIV and SARS-CoV-2. Front Microbiol 2022; 13:889643. [PMID: 35722303 PMCID: PMC9201468 DOI: 10.3389/fmicb.2022.889643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases are one of the main threats to public health, with the potential to cause a pandemic when the infectious agent manages to spread globally. The first major pandemic to appear in the 20th century was the influenza pandemic of 1918, caused by the influenza A H1N1 strain that is characterized by a high fatality rate. Another major pandemic was caused by the human immunodeficiency virus (HIV), that started early in the 20th century and remained undetected until 1981. The ongoing HIV pandemic demonstrated a high mortality and morbidity rate, with discrepant impacts in different regions around the globe. The most recent major pandemic event, is the ongoing pandemic of COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has caused over 5.7 million deaths since its emergence, 2 years ago. The aim of this work is to highlight the main determinants of the emergence, epidemic response and available countermeasures of these three pandemics, as we argue that such knowledge is paramount to prepare for the next pandemic. We analyse these pandemics’ historical and epidemiological contexts and the determinants of their emergence. Furthermore, we compare pharmaceutical and non-pharmaceutical interventions that have been used to slow down these three pandemics and zoom in on the technological advances that were made in the progress. Finally, we discuss the evolution of epidemiological modelling, that has become an essential tool to support public health policy making and discuss it in the context of these three pandemics. While these pandemics are caused by distinct viruses, that ignited in different time periods and in different regions of the globe, our work shows that many of the determinants of their emergence and countermeasures used to halt transmission were common. Therefore, it is important to further improve and optimize such approaches and adapt it to future threatening emerging infectious diseases.
Collapse
Affiliation(s)
- Mafalda N S Miranda
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Andrea Torneri
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofia G Seabra
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Pieter J K Libin
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium.,Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium.,Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| |
Collapse
|
4
|
Pingarilho M, Pimentel V, Miranda MNS, Silva AR, Diniz A, Ascenção BB, Piñeiro C, Koch C, Rodrigues C, Caldas C, Morais C, Faria D, da Silva EG, Teófilo E, Monteiro F, Roxo F, Maltez F, Rodrigues F, Gaião G, Ramos H, Costa I, Germano I, Simões J, Oliveira J, Ferreira J, Poças J, da Cunha JS, Soares J, Henriques J, Mansinho K, Pedro L, Aleixo MJ, Gonçalves MJ, Manata MJ, Mouro M, Serrado M, Caixeiro M, Marques N, Costa O, Pacheco P, Proença P, Rodrigues P, Pinho R, Tavares R, de Abreu RC, Côrte-Real R, Serrão R, Castro RSE, Nunes S, Faria T, Baptista T, Martins MRO, Gomes P, Mendão L, Simões D, Abecasis A. HIV-1-Transmitted Drug Resistance and Transmission Clusters in Newly Diagnosed Patients in Portugal Between 2014 and 2019. Front Microbiol 2022; 13:823208. [PMID: 35558119 PMCID: PMC9090520 DOI: 10.3389/fmicb.2022.823208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To describe and analyze transmitted drug resistance (TDR) between 2014 and 2019 in newly infected patients with HIV-1 in Portugal and to characterize its transmission networks. Methods Clinical, socioepidemiological, and risk behavior data were collected from 820 newly diagnosed patients in Portugal between September 2014 and December 2019. The sequences obtained from drug resistance testing were used for subtyping, TDR determination, and transmission cluster (TC) analyses. Results In Portugal, the overall prevalence of TDR between 2014 and 2019 was 11.0%. TDR presented a decreasing trend from 16.7% in 2014 to 9.2% in 2016 (p for-trend = 0.114). Multivariate analysis indicated that TDR was significantly associated with transmission route (MSM presented a lower probability of presenting TDR when compared to heterosexual contact) and with subtype (subtype C presented significantly more TDR when compared to subtype B). TC analysis corroborated that the heterosexual risk group presented a higher proportion of TDR in TCs when compared to MSMs. Among subtype A1, TDR reached 16.6% in heterosexuals, followed by 14.2% in patients infected with subtype B and 9.4% in patients infected with subtype G. Conclusion Our molecular epidemiology approach indicates that the HIV-1 epidemic in Portugal is changing among risk group populations, with heterosexuals showing increasing levels of HIV-1 transmission and TDR. Prevention measures for this subpopulation should be reinforced.
Collapse
Affiliation(s)
- Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Mafalda N S Miranda
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Ana Rita Silva
- Serviço de Infeciologia, Hospital Beatriz Ângelo, Loures, Portugal
| | - António Diniz
- Unidade de Imunodeficiência, Centro Hospitalar Universitário Lisboa Norte - HPV, Lisbon, Portugal
| | | | - Carmela Piñeiro
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Carmo Koch
- Centro de Biologia Molecular, Serviço de Imunohemoterapia do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Catarina Rodrigues
- Serviço de Medicina, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Cátia Caldas
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Célia Morais
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Domitília Faria
- Serviço de Medicina, Hospital de Portimão, Centro Hospitalar Universitário do Algarve, Portimão, Portugal
| | | | - Eugénio Teófilo
- Serviço de Medicina, Hospital de Santo António dos Capuchos, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Fátima Monteiro
- Centro de Biologia Molecular, Serviço de Imunohemoterapia do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Fausto Roxo
- Hospital de Dia de Doenças Infeciosas, Hospital Distrital de Santarém, Santarém, Portugal
| | - Fernando Maltez
- Serviço de Doenças Infeciosas, Hospital de Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Fernando Rodrigues
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Guilhermina Gaião
- Serviço de Patologia Clínica, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Helena Ramos
- Serviço de Patologia Clínica, Centro Hospitalar do Porto, Porto, Portugal
| | - Inês Costa
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), Lisbon, Portugal
| | - Isabel Germano
- Serviço de Medicina, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Joana Simões
- Serviço de Medicina, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Joaquim Oliveira
- Serviço de Doenças, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - José Ferreira
- Serviço de Medicina, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - José Poças
- Serviço de Infeciologia, Centro Hospitalar de Setúbal, Setúbal, Portugal
| | | | - Jorge Soares
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Júlia Henriques
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), Lisbon, Portugal
| | - Kamal Mansinho
- Serviço de Doenças Infeciosas, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Liliana Pedro
- Serviço de Medicina, Hospital de Portimão, Centro Hospitalar Universitário do Algarve, Portimão, Portugal
| | | | | | - Maria José Manata
- Serviço de Doenças Infeciosas, Hospital de Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Margarida Mouro
- Serviço de Infeciologia, Hospital de Aveiro, Centro Hospitalar Baixo Vouga, Aveiro, Portugal
| | - Margarida Serrado
- Unidade de Imunodeficiência, Centro Hospitalar Universitário Lisboa Norte - HPV, Lisbon, Portugal
| | - Micaela Caixeiro
- Serviço de Infeciologia, Hospital Professor Doutor Fernando da Fonseca, Amadora, Portugal
| | - Nuno Marques
- Serviço de Infeciologia, Hospital Garcia da Orta, Almada, Portugal
| | - Olga Costa
- Serviço de Patologia Clínica, Biologia Molecular, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Patrícia Pacheco
- Serviço de Infeciologia, Hospital Professor Doutor Fernando da Fonseca, Amadora, Portugal
| | - Paula Proença
- Serviço de Infeciologia, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Paulo Rodrigues
- Serviço de Infeciologia, Hospital Beatriz Ângelo, Loures, Portugal
| | - Raquel Pinho
- Serviço de Medicina, Hospital de Portimão, Centro Hospitalar Universitário do Algarve, Portimão, Portugal
| | - Raquel Tavares
- Serviço de Infeciologia, Hospital Beatriz Ângelo, Loures, Portugal
| | - Ricardo Correia de Abreu
- Serviço de Infeciologia, Unidade de Local de Saúde de Matosinhos, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Rita Côrte-Real
- Serviço de Patologia Clínica, Biologia Molecular, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Rosário Serrão
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | | | - Sofia Nunes
- Serviço de Infeciologia, Hospital de Aveiro, Centro Hospitalar Baixo Vouga, Aveiro, Portugal
| | - Telo Faria
- Unidade Local de Saúde do Baixo Alentejo, Hospital José Joaquim Fernandes, Beja, Portugal
| | - Teresa Baptista
- Serviço de Doenças Infeciosas, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Maria Rosário O Martins
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Perpétua Gomes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), Lisbon, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Costa da Caparica, Portugal
| | - Luís Mendão
- Grupo de Ativistas em Tratamentos (GAT), Lisbon, Portugal
| | - Daniel Simões
- Grupo de Ativistas em Tratamentos (GAT), Lisbon, Portugal
| | - Ana Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
5
|
Miranda MNS, Pingarilho M, Pimentel V, Martins MDRO, Kaiser R, Seguin-Devaux C, Paredes R, Zazzi M, Incardona F, Abecasis AB. Trends of Transmitted and Acquired Drug Resistance in Europe From 1981 to 2019: A Comparison Between the Populations of Late Presenters and Non-late Presenters. Front Microbiol 2022; 13:846943. [PMID: 35495657 PMCID: PMC9044068 DOI: 10.3389/fmicb.2022.846943] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background The increased use of antiretroviral therapy (ART) has decreased mortality and morbidity of HIV-1 infected people but increasing levels of HIV drug resistance threatens the success of ART regimens. Conversely, late presentation can impact treatment outcomes, health costs, and potential transmission of HIV. Objective To describe the patterns of transmitted drug resistance (TDR) and acquired drug resistance (ADR) in HIV-1 infected patients followed in Europe, to compare its patterns in late presenters (LP) vs non-late presenters (NLP), and to analyze the most prevalent drug resistance mutations among HIV-1 subtypes. Methods Our study included clinical, socio-demographic, and genotypic information from 26,973 HIV-1 infected patients from the EuResist Integrated Database (EIDB) between 1981 and 2019. Results Among the 26,973 HIV-1 infected patients in the analysis, 11,581 (42.9%) were ART-naïve patients and 15,392 (57.1%) were ART-experienced. The median age was 37 (IQR: 27.0-45.0) years old and 72.6% were males. The main transmission route was through heterosexual contact (34.9%) and 81.7% of patients originated from Western Europe. 71.9% of patients were infected by subtype B and 54.8% of patients were classified as LP. The overall prevalence of TDR was 12.8% and presented an overall decreasing trend (p for trend < 0.001), the ADR prevalence was 68.5% also with a decreasing trend (p for trend < 0.001). For LP and NLP, the TDR prevalence was 12.3 and 12.6%, respectively, while for ADR, 69.9 and 68.2%, respectively. The most prevalent TDR drug resistance mutations, in both LP and NLP, were K103N/S, T215rev, T215FY, M184I/V, M41I/L, M46I/L, and L90M. Conclusion Our study showed that the overall TDR (12.8%) and ADR (68.5%) presented decreasing trends during the study time period. For LP, the overall TDR was slightly lower than for NLP (12.3 vs 12.6%, respectively); while this pattern was opposite for ADR (LP slightly higher than NLP). We suggest that these differences, in the case of TDR, can be related to the dynamics of fixation of drug resistance mutations; and in the case of ADR with the more frequent therapeutic failure in LPs.
Collapse
Affiliation(s)
- Mafalda N S Miranda
- Global Health and Tropical Medicine (GHTM), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Maria do Rosário O Martins
- Global Health and Tropical Medicine (GHTM), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Carole Seguin-Devaux
- Laboratory of Retrovirology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Roger Paredes
- Infectious Diseases Department and IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), Lisbon, Portugal
| |
Collapse
|
6
|
Lan Y, Li L, He X, Hu F, Deng X, Cai W, Li J, Ling X, Fan Q, Cai X, Li L, Li F, Tang X. Transmitted drug resistance and transmission clusters among HIV-1 treatment-naïve patients in Guangdong, China: a cross-sectional study. Virol J 2021; 18:181. [PMID: 34488793 PMCID: PMC8422730 DOI: 10.1186/s12985-021-01653-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Transmitted drug resistance (TDR) that affects the effectiveness of the first-line antiretroviral therapy (ART) regimen is becoming prevalent worldwide. However, its prevalence and transmission among HIV-1 treatment-naïve patients in Guangdong, China are rarely reported. We aimed to comprehensively analyze the prevalence of TDR and the transmission clusters of HIV-1 infected persons before ART in Guangdong. METHODS The HIV-1 treatment-naïve patients were recruited between January 2018 and December 2018. The HIV-1 pol region was amplified by reverse transcriptional PCR and sequenced by sanger sequencing. Genotypes, surveillance drug resistance mutations (SDRMs) and TDR were analyzed. Genetic transmission clusters among patients were identified by pairwise Tamura-Nei 93 genetic distance, with a threshold of 0.015. RESULTS A total of 2368 (97.17%) HIV-1 pol sequences were successfully amplified and sequenced from the enrolled 2437 patients. CRF07_BC (35.90%, 850/2368), CRF01_AE (35.56%, 842/2368) and CRF55_01B (10.30%, 244/2368) were the main HIV-1 genotypes circulating in Guangdong. Twenty-one SDRMs were identified among fifty-two drug-resistant sequences. The overall prevalence of TDR was 2.20% (52/2368). Among the 2368 patients who underwent sequencing, 8 (0.34%) had TDR to protease inhibitors (PIs), 22 (0.93%) to nucleoside reverse transcriptase inhibitors (NRTIs), and 23 (0.97%) to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Two (0.08%) sequences showed dual-class resistance to both NRTIs and NNRTIs, and no sequences showed triple-class resistance. A total of 1066 (45.02%) sequences were segregated into 194 clusters, ranging from 2 to 414 sequences. In total, 15 (28.85%) of patients with TDR were included in 9 clusters; one cluster contained two TDR sequences with the K103N mutation was observed. CONCLUSIONS There is high HIV-1 genetic heterogeneity among patients in Guangdong. Although the overall prevalence of TDR is low, it is still necessary to remain vigilant regarding some important SDRMs.
Collapse
Affiliation(s)
- Yun Lan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Xiang He
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Xizi Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Junbin Li
- Guangdong Center for Diagnosis and Treatment of AIDS, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Xuemei Ling
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China.,Guangdong Center for Diagnosis and Treatment of AIDS, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Qinghong Fan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Xiaoli Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Liya Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China.
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China.
| |
Collapse
|