1
|
Rossi A, Santi A, Barsi F, Casadei G, Di Donato A, Fontana MC, Galletti G, Garbarino CA, Lombardini A, Musto C, Prosperi A, Pupillo G, Rugna G, Tamba M. Eleven Years of Health Monitoring in Wild Boars ( Sus scrofa) in the Emilia-Romagna Region (Italy). Animals (Basel) 2023; 13:1832. [PMID: 37889705 PMCID: PMC10252029 DOI: 10.3390/ani13111832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, the growth of wild ungulates has increased the focus on their health monitoring. In particular, the health status of wild boars is relevant for the economic impact on the pig industry. The Emilia-Romagna region activated a wildlife monitoring plan to better evaluate the health status of the wild boar population. Between 2011 and 2021, samples of found dead and hunted wild boar have been examined for trichinellosis, tuberculosis, brucellosis, african swine fever, classical swine fever, Aujeszky's disease, swine vesicular disease, and swine influenza A. Trichinella britovi was identified in 0.001% of the examined wild boars; neither M. bovis nor M. tuberculosis were found in M. tuberculosis complex positive samples; 2.3% were positive for Brucella suis; 29.4% of the sera were positive for Aujeszky's disease virus; and 0.9% of the samples were positive for swine influenza A virus. With an uncertain population estimate, the number of animals tested, the number of positives, and the sampling method do not allow us to make many inferences but suggest the need to implement and strengthen the existing surveillance activity, as it seems to be the only viable alternative for safeguarding animal and human health.
Collapse
Affiliation(s)
- Arianna Rossi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Annalisa Santi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Filippo Barsi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Gabriele Casadei
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Alessandra Di Donato
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Maria Cristina Fontana
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Giorgio Galletti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Chiara Anna Garbarino
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Annalisa Lombardini
- Settore Prevenzione Collettiva e Sanità Pubblica, Direzione Generale Cura della Persona, Salute e Welfare, Emilia-Romagna Region, 40127 Bologna, Italy;
| | - Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
| | - Alice Prosperi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Giovanni Pupillo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Gianluca Rugna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| |
Collapse
|
2
|
Chen W, Wang W, Wang X, Li Z, Wu K, Li X, Li Y, Yi L, Zhao M, Ding H, Fan S, Chen J. Advances in the differential molecular diagnosis of vesicular disease pathogens in swine. Front Microbiol 2022; 13:1019876. [PMID: 36386633 PMCID: PMC9641196 DOI: 10.3389/fmicb.2022.1019876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), Senecavirus A (SVA) and swine vesicular disease virus (SVDV) are members of the family Picornaviridae, which can cause similar symptoms - vesicular lesions in the tissues of the mouth, nose, feet, skin and mucous membrane of animals. Rapid and accurate diagnosis of these viruses allows for control measures to prevent the spread of these diseases. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR are traditional and reliable methods for pathogen detection, while their amplification reaction requires a thermocycler. Isothermal amplification methods including loop-mediated isothermal amplification and recombinase polymerase amplification developed in recent years are simple, rapid and do not require specialized equipment, allowing for point of care diagnostics. Luminex technology allows for simultaneous detection of multiple pathogens. CRISPR-Cas diagnostic systems also emerging nucleic acid detection technologies which are very sensitivity and specificity. In this paper, various nucleic acid detection methods aimed at vesicular disease pathogens in swine (including FMDV, SVA and SVDV) are summarized.
Collapse
Affiliation(s)
- Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Weijun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Shuangqi Fan, ; Jinding Chen,
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Shuangqi Fan, ; Jinding Chen,
| |
Collapse
|
3
|
Yang M, McIntyre L, Xu W, Brocchi E, Grazioli S, Hooper-McGrevy K, Nfon C. Validation of a competitive enzyme-linked immunosorbent assay to improve the serological diagnosis of swine vesicular disease. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2022; 86:157-161. [PMID: 35388225 PMCID: PMC8978281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Swine vesicular disease (SVD) is an infectious viral disease of pigs. The clinical symptoms of SVD are indistinguishable from other vesicular diseases. In countries free of vesicular diseases, rapid SVD diagnosis and differentiation from other vesicular diseases are essential. In this report, a competitive enzyme-linked immunosorbent assay (cELISA) was developed and validated to improve the current SVD serological diagnosis. In this cELISA, an anti-SVD monoclonal antibody (mAb) captures the recombinant SVD virus-like particle (SVD-VLP) antigen, and 5B7 mAb is used as a competitor to compete with polyclonal antibodies in SVD-positive sera. The cut-off value of the SVD-VLP based cELISA (SVD-VLP cELISA) is ≥ 65% inhibition (%). The determined diagnostic specificity was 99.2%. SVD-VLP cELISA successfully detected SVD antibodies in the sera of SVD-infected animals and produced a diagnostic sensitivity of 100%. A panel of SVD positive sere including outbreak samples (n = 11) and samples (n = 5) from experimentally inoculated pigs, were correctly identified as positive by the SVD-VLP cELISA. In terms of reducing false positives detected by the currently used cELISA (5B7 cELISA), the performance of SVD-VLP cELISA is comparable to the gold standard virus neutralization test.
Collapse
Affiliation(s)
- Ming Yang
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3M4 (Yang, McIntyre, Xu, Hooper-McGrevy, Nfon); Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi, 9-25124 Brescia, Italy (Brocchi, Grazioli)
| | - Leanne McIntyre
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3M4 (Yang, McIntyre, Xu, Hooper-McGrevy, Nfon); Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi, 9-25124 Brescia, Italy (Brocchi, Grazioli)
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3M4 (Yang, McIntyre, Xu, Hooper-McGrevy, Nfon); Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi, 9-25124 Brescia, Italy (Brocchi, Grazioli)
| | - Emiliana Brocchi
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3M4 (Yang, McIntyre, Xu, Hooper-McGrevy, Nfon); Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi, 9-25124 Brescia, Italy (Brocchi, Grazioli)
| | - Santina Grazioli
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3M4 (Yang, McIntyre, Xu, Hooper-McGrevy, Nfon); Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi, 9-25124 Brescia, Italy (Brocchi, Grazioli)
| | - Kathleen Hooper-McGrevy
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3M4 (Yang, McIntyre, Xu, Hooper-McGrevy, Nfon); Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi, 9-25124 Brescia, Italy (Brocchi, Grazioli)
| | - Charles Nfon
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3M4 (Yang, McIntyre, Xu, Hooper-McGrevy, Nfon); Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi, 9-25124 Brescia, Italy (Brocchi, Grazioli)
| |
Collapse
|
4
|
Kristensen T, Belsham GJ, Tjørnehøj K. Heat inactivation of foot-and-mouth disease virus, swine vesicular disease virus and classical swine fever virus when air-dried on plastic and glass surfaces. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
6
|
Diagnostic Performances of Different Genome Amplification Assays for the Detection of Swine Vesicular Disease Virus in Relation to Genomic Lineages That Circulated in Italy. Viruses 2020; 12:v12111336. [PMID: 33233870 PMCID: PMC7699968 DOI: 10.3390/v12111336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
During the last 25 years, swine vesicular disease (SVD) has occurred in Italy mostly sub-clinically. Therefore, regular testing of fecal samples from suspected holdings and high turnover premises was fundamental to identifying virus circulation and to achieve SVD eradication. In this study, we evaluated diagnostic performances of six genomic amplification methods, using positive fecal samples from 78 different outbreaks (1997–2014), which included different lineages. Comparison of three RT-PCRs, designed to amplify the same 154 nt portion of the gene 3D, demonstrated that a conventional and a real-time based on SYBR Green detection assay showed the highest diagnostic sensitivity, detecting all samples, while a real-time TaqMan-based test missed three cases, owing to two mismatches in the probe target sequence. Diagnostic and analytical specificities were optimal, as 300 negative field samples and other enteroviruses reacted negative. Three further evaluated tests, previously described, were a 3D-targeted reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) and two real-time RT-PCRs targeted on the 5′UTR region. Here, the presence of multiple mismatches in probe and primers reduced the diagnostic performances, and two of the assays were unable to detect viruses from one sub-lineage. These results highlight that the choice of tests using less nucleotide targets significantly contributed to the success of the SVD eradication plan.
Collapse
|