1
|
Chen X, Nie X, Lin X, Wang Y, Zhang L, Chen Z, Lin M. Regulation of keratinocyte barrier function and inflammatory response by the EGFR-STAT3 Pathway: Potential therapeutic implications of osimertinib and afatinib. Cytokine 2025; 185:156802. [PMID: 39612655 DOI: 10.1016/j.cyto.2024.156802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 12/01/2024]
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is crucial for skin barrier integrity and immune response. This study explores the impact of EGFR inhibitors, osimertinib and afatinib, on keratinocyte function, focusing on keratin (KRT1, KRT17) and tight junction protein (CLDN1, CLDN2, CLDN4) expression in HaCaT cells. Osimertinib significantly increased the mRNA and protein levels of keratins and inflammatory markers, IL-6 and TNF-α, via activation of the EGFR-STAT3 signaling pathway. Co-treatment with recombinant human EGF reversed these changes, suggesting the pathway's modulatory role. These findings underscore the potential therapeutic applications of targeting the EGFR-STAT3 axis in skin barrier dysfunction and inflammatory skin disorders.
Collapse
Affiliation(s)
- Xin Chen
- Ningde Clinical Medical College of Fujian Medical University, Ningde, Fujian 352100, China
| | - Xuekun Nie
- Ningde Clinical Medical College of Fujian Medical University, Ningde, Fujian 352100, China; Clinical Pharmacy, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian 352100, China; Collaborative Innovation Center of Active Ingredient Research of She Medicine(2020Z03), Ningde Normal University, Ningde, Fujian 352100, China; Innovation Center of Clinical Pharmacy Service(2023T06), Ningde Normal University, Ningde, Fujian 352100, China
| | - Xiaohui Lin
- Ningde Clinical Medical College of Fujian Medical University, Ningde, Fujian 352100, China; Clinical Pharmacy, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian 352100, China; Collaborative Innovation Center of Active Ingredient Research of She Medicine(2020Z03), Ningde Normal University, Ningde, Fujian 352100, China; Innovation Center of Clinical Pharmacy Service(2023T06), Ningde Normal University, Ningde, Fujian 352100, China
| | - Yujia Wang
- Ningde Clinical Medical College of Fujian Medical University, Ningde, Fujian 352100, China; Clinical Pharmacy, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian 352100, China; Collaborative Innovation Center of Active Ingredient Research of She Medicine(2020Z03), Ningde Normal University, Ningde, Fujian 352100, China; Innovation Center of Clinical Pharmacy Service(2023T06), Ningde Normal University, Ningde, Fujian 352100, China
| | - Lingling Zhang
- Ningde Clinical Medical College of Fujian Medical University, Ningde, Fujian 352100, China; Clinical Pharmacy, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian 352100, China; Collaborative Innovation Center of Active Ingredient Research of She Medicine(2020Z03), Ningde Normal University, Ningde, Fujian 352100, China; Innovation Center of Clinical Pharmacy Service(2023T06), Ningde Normal University, Ningde, Fujian 352100, China
| | - Zichun Chen
- Ningde Clinical Medical College of Fujian Medical University, Ningde, Fujian 352100, China; Clinical Pharmacy, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian 352100, China; Collaborative Innovation Center of Active Ingredient Research of She Medicine(2020Z03), Ningde Normal University, Ningde, Fujian 352100, China; Innovation Center of Clinical Pharmacy Service(2023T06), Ningde Normal University, Ningde, Fujian 352100, China.
| | - Minhua Lin
- Ningde Clinical Medical College of Fujian Medical University, Ningde, Fujian 352100, China; Clinical Pharmacy, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian 352100, China; Collaborative Innovation Center of Active Ingredient Research of She Medicine(2020Z03), Ningde Normal University, Ningde, Fujian 352100, China; Innovation Center of Clinical Pharmacy Service(2023T06), Ningde Normal University, Ningde, Fujian 352100, China.
| |
Collapse
|
2
|
Nau R, Seele J, Bodilsen J, Groß U. Optimization of antiviral dosing in Herpesviridae encephalitis: a promising approach to improve outcome? Clin Microbiol Infect 2024:S1198-743X(24)00594-9. [PMID: 39675474 DOI: 10.1016/j.cmi.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Despite established antiviral therapy for herpes simplex (HSV), varicella zoster (VZV) and cytomegalovirus (CMV) encephalitis, outcome remains poor. OBJECTIVES To assess pharmacokinetic (PK) and -dynamic (PD) data of antiviral drugs in the central nervous system (CNS) to optimize treatment of Herpesviridae encephalitis. SOURCES PUBMED search 1950 to September 2024, terms 1. "encephalitis" and ("HSV" or "VZV" or "CMV") or 2. cerebrospinal and ["(val)acyclovir" or "(val)ganciclovir" or "foscarnet" or "cidofovir"]. CONTENT Antivirals against herpes viruses apparently act in a time-dependent manner. To suppress viral replication, drug concentration in the extracellular space at the site of the infection should be kept above the concentrations active in cell cultures for 24h per day. Most data reflect delayed drug entry into lumbar cerebrospinal fluid (CSF). Ratios of the areas of the concentration/time curves (AUC) in CSF and serum (AUCCSF/AUCS) of acyclovir, ganciclovir and foscarnet are 0.15-0.3 in the absence of meningeal inflammation and increase in severe meningoencephalitis. Elimination half-lives (t1/2β) are longer in CSF than in plasma. CSF concentrations are rough approximations of drug concentrations in the cerebral extracellular fluid (ECF). Lumbar CSF concentrations usually are higher than ventricular or cisternal CSF concentrations tending to overestimate cerebral ECF concentrations. Provided the availability of adequate measurements in individual CNS compartments - antiviral concentrations and efficacy may be predicted by future PK/PD modeling. Probenecid holds potential to reduce efflux of antiviral drugs from the CNS. IMPLICATIONS The long t1/2β of antiviral drugs in CSF suggest relatively uniform steady state CSF levels at dosing intervals ≤12h and accumulation after repeated dosing. Probenecid is of unproven utility. To rapidly attain effective concentrations in the infected tissue, physiologically based pharmacokinetic (PBPK) and PK/PD modeling may be helpful. Until reliable PK/PD data are available, doubling the first dose should be considered.
Collapse
Affiliation(s)
- Roland Nau
- Institute of Neuropathology, Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark; University Medical Center, Göttingen, Germany, Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark.
| | - Jana Seele
- Institute of Neuropathology, Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark; University Medical Center, Göttingen, Germany, Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Jacob Bodilsen
- Department of Geriatrics, Protestant Hospital Göttingen-Weende, Göttingen, Germany
| | - Uwe Groß
- Medical Microbiology and Virology, Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
3
|
Partiot E, Gorda B, Lutz W, Lebrun S, Khalfi P, Mora S, Charlot B, Majzoub K, Desagher S, Ganesh G, Colomb S, Gaudin R. Organotypic culture of human brain explants as a preclinical model for AI-driven antiviral studies. EMBO Mol Med 2024; 16:1004-1026. [PMID: 38472366 PMCID: PMC11018746 DOI: 10.1038/s44321-024-00039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Viral neuroinfections represent a major health burden for which the development of antivirals is needed. Antiviral compounds that target the consequences of a brain infection (symptomatic treatment) rather than the cause (direct-acting antivirals) constitute a promising mitigation strategy that requires to be investigated in relevant models. However, physiological surrogates mimicking an adult human cortex are lacking, limiting our understanding of the mechanisms associated with viro-induced neurological disorders. Here, we optimized the Organotypic culture of Post-mortem Adult human cortical Brain explants (OPAB) as a preclinical platform for Artificial Intelligence (AI)-driven antiviral studies. OPAB shows robust viability over weeks, well-preserved 3D cytoarchitecture, viral permissiveness, and spontaneous local field potential (LFP). Using LFP as a surrogate for neurohealth, we developed a machine learning framework to predict with high confidence the infection status of OPAB. As a proof-of-concept, we showed that antiviral-treated OPAB could partially restore LFP-based electrical activity of infected OPAB in a donor-dependent manner. Together, we propose OPAB as a physiologically relevant and versatile model to study neuroinfections and beyond, providing a platform for preclinical drug discovery.
Collapse
Affiliation(s)
- Emma Partiot
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France
- Univ Montpellier, 34090, Montpellier, France
| | - Barbara Gorda
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France
- Univ Montpellier, 34090, Montpellier, France
| | - Willy Lutz
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France
- Univ Montpellier, 34090, Montpellier, France
| | - Solène Lebrun
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France
- Univ Montpellier, 34090, Montpellier, France
| | - Pierre Khalfi
- Univ Montpellier, 34090, Montpellier, France
- CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), 34293, Montpellier, France
| | - Stéphan Mora
- Univ Montpellier, 34090, Montpellier, France
- CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), 34293, Montpellier, France
| | - Benoit Charlot
- Univ Montpellier, 34090, Montpellier, France
- Institut d'Electronique et des Systèmes IES, CNRS, 860 Rue de St - Priest Bâtiment 5, 34090, Montpellier, France
| | - Karim Majzoub
- Univ Montpellier, 34090, Montpellier, France
- CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), 34293, Montpellier, France
| | - Solange Desagher
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France
- Univ Montpellier, 34090, Montpellier, France
- CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), 34293, Montpellier, France
| | - Gowrishankar Ganesh
- Univ Montpellier, 34090, Montpellier, France
- UM-CNRS Laboratoire d'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), 161, Rue Ada, 34090, Montpellier, France
| | - Sophie Colomb
- Univ Montpellier, 34090, Montpellier, France
- Equipe de droit pénal et sciences forensiques de Montpellier (EDPFM), Univ. Montpellier, Département de médecine légale, Pôle Urgences, Centre Hospitalo-Universitaire de Montpellier, 371 Avenue du Doyen Gaston Giraud, 34285, Montpellier, France
| | - Raphael Gaudin
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France.
- Univ Montpellier, 34090, Montpellier, France.
| |
Collapse
|
4
|
Zhu J, Abaci HE. Human skin-on-a-chip for mpox pathogenesis studies and preclinical drug evaluation. Trends Pharmacol Sci 2023; 44:865-868. [PMID: 37500295 PMCID: PMC10811284 DOI: 10.1016/j.tips.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Timely intervention of preventative and therapeutic measures abated a 2022 mpox global outbreak. However, the high transmissibility and unique pathological characteristics of mpox demand further investigation. Here, we discuss the potentials of human skin-on-a-chip as a valuable model for mpox disease evaluation, to achieve in-depth physiological understanding and desirable therapeutic predictive capabilities.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| | - Hasan E Abaci
- Department of Dermatology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Sherif AY, Harisa GI, Alanazi FK, Nasr FA, Alqahtani AS. Engineered Nanoscale Lipid-Based Formulation as Potential Enhancer of Gefitinib Lymphatic Delivery: Cytotoxicity and Apoptotic Studies Against the A549 Cell Line. AAPS PharmSciTech 2022; 23:183. [PMID: 35773422 PMCID: PMC9247939 DOI: 10.1208/s12249-022-02332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to engineer a nanoscale lipid-based lymphatic drug delivery system with D-α-Tocopherol polyethylene glycol 1000 succinate to combat the lymphatic metastasis of lung cancer. The nanoscale lipid-based systems including GEF-SLN, GEF-NLC, and GEF-LE were prepared and pharmaceutically characterized. In addition, the most stable formulation (GEF-NLC) was subjected to an in vitro release study. Afterward, the optimized GEF-NLC was engineered with TPGS (GEF-TPGS-NLC) and subjected to in vitro cytotoxicity, and apoptotic studies using the A549 cells line as a surrogate model for lung cancer. The present results revealed that particle size and polydispersity index of freshly prepared formulations were ranging from 198 to 280 nm and 0.106 to 0.240, respectively, with negative zeta potential ranging from − 14 to − 27.6.mV. An in vitro release study showed that sustained drug release was attained from GEF-NLC containing a high concentration of lipid. In addition, GEF-NLC and GEF-TPGS-NLC showed remarkable entrapment efficiency above 89% and exhibited sustained release profiles. Cytotoxicity showed that IC50 of pure GEF was 11.15 μg/ml which decreased to 7.05 μg/ml for GEF-TPGS-NLC. The apoptotic study revealed that GEF-TPGS-NLC significantly decreased the number of living cells from 67 to 58% when compared with pure GEF. The present results revealed that the nanoscale and lipid composition of the fabricated SLN, NLC, and LE could mediate the lymphatic uptake of GEF to combat the lymphatic tumor metastasis. Particularly, GEF-TPGS-NLC is a promising LDDS to increase the therapeutic outcomes of GEF during the treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. .,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors. Viruses 2021; 13:v13081590. [PMID: 34452455 PMCID: PMC8402746 DOI: 10.3390/v13081590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) continuously causes epidemics and claims numerous lives every year. The available treatment options are insufficient and the limited pertinence of animal models for human IAV infections is hampering the development of new therapeutics. Bioprinted tissue models support studying pathogenic mechanisms and pathogen-host interactions in a human micro tissue environment. Here, we describe a human lung model, which consisted of a bioprinted base of primary human lung fibroblasts together with monocytic THP-1 cells, on top of which alveolar epithelial A549 cells were printed. Cells were embedded in a hydrogel consisting of alginate, gelatin and collagen. These constructs were kept in long-term culture for 35 days and their viability, expression of specific cell markers and general rheological parameters were analyzed. When the models were challenged with a combination of the bacterial toxins LPS and ATP, a release of the proinflammatory cytokines IL-1β and IL-8 was observed, confirming that the model can generate an immune response. In virus inhibition assays with the bioprinted lung model, the replication of a seasonal IAV strain was restricted by treatment with an antiviral agent in a dose-dependent manner. The printed lung construct provides an alveolar model to investigate pulmonary pathogenic biology and to support development of new therapeutics not only for IAV, but also for other viruses.
Collapse
|
7
|
de Dios-Figueroa GT, Aguilera-Marquez JDR, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture Models in COVID-19 Times: A Review of 3D Technologies to Understand and Accelerate Therapeutic Drug Discovery. Biomedicines 2021; 9:602. [PMID: 34073231 PMCID: PMC8226796 DOI: 10.3390/biomedicines9060602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, emerging viruses have become a worldwide concern. The fast and extensive spread of the disease caused by SARS-CoV-2 (COVID-19) has impacted the economy and human activity worldwide, highlighting the human vulnerability to infectious diseases and the need to develop and optimize technologies to tackle them. The three-dimensional (3D) cell culture models emulate major tissue characteristics such as the in vivo virus-host interactions. These systems may help to generate a quick response to confront new viruses, establish a reliable evaluation of the pathophysiology, and contribute to therapeutic drug evaluation in pandemic situations such as the one that humanity is living through today. This review describes different types of 3D cell culture models, such as spheroids, scaffolds, organoids, and organs-on-a-chip, that are used in virus research, including those used to understand the new severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Guadalupe Tonantzin de Dios-Figueroa
- Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico; (G.T.d.D.-F.); (J.d.R.A.-M.)
| | - Janette del Rocío Aguilera-Marquez
- Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico; (G.T.d.D.-F.); (J.d.R.A.-M.)
| | - Tanya A. Camacho-Villegas
- CONACYT-Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico;
| | - Pavel H. Lugo-Fabres
- CONACYT-Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico;
| |
Collapse
|