1
|
Kilgore PB, Sha J, Hendrix EK, Neil BH, Lawrence WS, Peel JE, Hittle L, Woolston J, Sulakvelidze A, Schwartz JA, Chopra AK. A bacteriophage cocktail targeting Yersinia pestis provides strong post-exposure protection in a rat pneumonic plague model. Microbiol Spectr 2024; 12:e0094224. [PMID: 39292000 PMCID: PMC11537065 DOI: 10.1128/spectrum.00942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Yersinia pestis, one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug-resistant strains. Indeed, antibiotic-resistant strains (e.g., strains carrying multidrug-resistant or MDR plasmids) have been isolated in various countries and endemic areas. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines (none FDA approved yet) may not be effective and those that cannot be managed by currently available antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation effective against a panel of at least 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ~88% protection when delivered 18 h post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies provide proof-of-concept that YPP-401 could be an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed multidrug-resistant strains.IMPORTANCECurrently, there are no FDA-approved plague vaccines. Since antibiotic-resistant strains of Y. pestis have emerged or are being intentionally developed to be used as a biothreat agent, new treatment modalities are direly needed. Phage therapy provides a viable option against potentially antibiotic-resistant strains. Additionally, phages are nontoxic and have been approved by the FDA for use in the food industry. Our study provides the first evidence of the protective effect of a cocktail of four phages against pneumonic plague, the most severe form of disease. When treatment was initiated 18 h post infection by either the intranasal or intraperitoneal route in Brown Norway rats, up to 87.5% protection was observed. The phage cocktail had a minimal impact on a representative human microbiome panel, unlike antibiotics. This study provides strong proof-of-concept data for the further development of phage-based therapy to treat plague.
Collapse
Affiliation(s)
- Paul B. Kilgore
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Emily K. Hendrix
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Blake H. Neil
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William S. Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer E. Peel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | - Ashok K. Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Kilgore PB, Sha J, Hendrix EK, Neil BH, Lawrence WS, Peel JE, Hittle L, Woolston J, Sulakvelidze A, Schwartz JA, Chopra AK. A Bacteriophage Cocktail Targeting Yersinia pestis Provides Strong Post-Exposure Protection in a Rat Pneumonic Plague Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576055. [PMID: 38293171 PMCID: PMC10827167 DOI: 10.1101/2024.01.17.576055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Yersinia pestis , one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug resistant strains. The dissemination of such Y. pestis strains could be catastrophic, with public health consequences far more daunting than those caused by the recent COVID-19 pandemic. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines, none FDA approved yet, may not be effective, and those that cannot be controlled by approved antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation with a 100% lytic activity against a panel of 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ∼88% protection when delivered 18 hours post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies suggest that YPP-401 could provide an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed strains that cannot be managed by vaccines in development and antibiotics.
Collapse
|
3
|
Meng B, Qi Z, Li X, Peng H, Bi S, Wei X, Li Y, Zhang Q, Xu X, Zhao H, Yang X, Wang C, Zhao X. Characterization of Mu-Like Yersinia Phages Exhibiting Temperature Dependent Infection. Microbiol Spectr 2023; 11:e0020323. [PMID: 37466430 PMCID: PMC10434027 DOI: 10.1128/spectrum.00203-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Yersinia pestis is the etiological agent of plague. Marmota himalayana of the Qinghai-Tibetan plateau is the primary host of flea-borne Y. pestis. This study is the report of isolation of Mu-like bacteriophages of Y. pestis from M. himalayana. The isolation and characterization of four Mu-like phages of Y. pestis were reported, which were named as vB_YpM_3, vB_YpM_5, vB_YpM_6, and vB_YpM_23 according to their morphology. Comparative genome analysis revealed that vB_YpM_3, vB_YpM_5, vB_YpM_6, and vB_YpM_23 are phylogenetically closest to Escherichia coli phages Mu, D108 and Shigella flexneri phage SfMu. The role of LPS core structure of Y. pestis in the phages' receptor was pinpointed. All the phages exhibit "temperature dependent infection," which is independent of the growth temperature of the host bacteria and dependent of the temperature of phage infection. The phages lyse the host bacteria at 37°C, but enter the lysogenic cycle and become prophages in the chromosome of the host bacteria at 26°C. IMPORTANCE Mu-like bacteriophages of Y. pestis were isolated from M. himalayana of the Qinghai-Tibetan plateau in China. These bacteriophages have a unique temperature dependent life cycle, follow a lytic cycle at the temperature of warm-blooded mammals (37°С), and enter the lysogenic cycle at the temperature of its flea-vector (26°С). A switch from the lysogenic to the lytic cycle occurred when lysogenic bacteria were incubated from lower temperature to higher temperature (initially incubating at 26°C and shifting to 37°C). It is speculated that the temperature dependent lifestyle of bacteriophages may affect the population dynamics and pathogenicity of Y. pestis.
Collapse
Affiliation(s)
- Biao Meng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Institute of Disease Control and Prevention, Chinese PLA, Beijing, China
| | - Zhizhen Qi
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Xiang Li
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Hong Peng
- Institute of Disease Control and Prevention, Chinese PLA, Beijing, China
| | - Shanzheng Bi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Institute of Disease Control and Prevention, Chinese PLA, Beijing, China
| | - Xiao Wei
- Institute of Disease Control and Prevention, Chinese PLA, Beijing, China
| | - Yan Li
- Institute of Disease Control and Prevention, Chinese PLA, Beijing, China
| | - Qi Zhang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Xiaoqing Xu
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Haihong Zhao
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Xiaoyan Yang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Key Laboratory for Plague Prevention and Control of Qinghai Province, Xining, China
| | - Changjun Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Institute of Disease Control and Prevention, Chinese PLA, Beijing, China
| | - Xiangna Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Institute of Disease Control and Prevention, Chinese PLA, Beijing, China
| |
Collapse
|
4
|
Suladze T, Jaiani E, Darsavelidze M, Elizbarashvili M, Gorge O, Kusradze I, Kokashvili T, Lashkhi N, Tsertsvadze G, Janelidze N, Chubinidze S, Grdzelidze M, Tsanava S, Valade E, Tediashvili M. New Bacteriophages with Podoviridal Morphotypes Active against Yersinia pestis: Characterization and Application Potential. Viruses 2023; 15:1484. [PMID: 37515171 PMCID: PMC10385128 DOI: 10.3390/v15071484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Phages of highly pathogenic bacteria represent an area of growing interest for bacterial detection and identification and subspecies typing, as well as for phage therapy and environmental decontamination. Eight new phages-YpEc56, YpEc56D, YpEc57, YpEe58, YpEc1, YpEc2, YpEc11, and YpYeO9-expressing lytic activity towards Yersinia pestis revealed a virion morphology consistent with the Podoviridae morphotype. These phages lyse all 68 strains from 2 different sets of Y. pestis isolates, thus limiting their potential application for subtyping of Y. pestis strains but making them rather promising in terms of infection control. Two phages-YpYeO9 and YpEc11-were selected for detailed studies based on their source of isolation and lytic cross activity towards other Enterobacteriaceae. The full genome sequencing demonstrated the virulent nature of new phages. Phage YpYeO9 was identified as a member of the Teseptimavirus genus and YpEc11 was identified as a member of the Helsettvirus genus, thereby representing new species. A bacterial challenge assay in liquid microcosm with a YpYeO9/YpEc11 phage mixture showed elimination of Y. pestis EV76 during 4 h at a P/B ratio of 1000:1. These results, in combination with high lysis stability results of phages in liquid culture, the low frequency of formation of phage resistant mutants, and their viability under different physical-chemical factors indicate their potential for their practical use as an antibacterial mean.
Collapse
Affiliation(s)
- Tamar Suladze
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Ekaterine Jaiani
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Marina Darsavelidze
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Maia Elizbarashvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Olivier Gorge
- French Armed Forces Biomedical Research Institute (IRBA), 1, Place du Général Valérie André-BP 73, 91223 Bretigny-sur-Orge, France
| | - Ia Kusradze
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Tamar Kokashvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
- School of Science and Technology, University of Georgia, 77a, Kostava Str., 0171 Tbilisi, Georgia
| | - Nino Lashkhi
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - George Tsertsvadze
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
| | - Nino Janelidze
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
- School of Science and Technology, University of Georgia, 77a, Kostava Str., 0171 Tbilisi, Georgia
| | - Svetlana Chubinidze
- National Center for Disease Control and Pubic Health (NCDC), 99, Kakheti Highway, 0109 Tbilisi, Georgia
| | - Marina Grdzelidze
- National Center for Disease Control and Pubic Health (NCDC), 99, Kakheti Highway, 0109 Tbilisi, Georgia
| | - Shota Tsanava
- National Center for Disease Control and Pubic Health (NCDC), 99, Kakheti Highway, 0109 Tbilisi, Georgia
| | - Eric Valade
- French Armed Forces Biomedical Research Institute (IRBA), 1, Place du Général Valérie André-BP 73, 91223 Bretigny-sur-Orge, France
| | - Marina Tediashvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology (Eliava IBMV), 3, Gotua Str., 0160 Tbilisi, Georgia
- School of Science and Technology, University of Georgia, 77a, Kostava Str., 0171 Tbilisi, Georgia
| |
Collapse
|
5
|
Braun P, Raab R, Bugert JJ, Braun S. Recombinant Reporter Phage rTUN1:: nLuc Enables Rapid Detection and Real-Time Antibiotic Susceptibility Testing of Klebsiella pneumoniae K64 Strains. ACS Sens 2023; 8:630-639. [PMID: 36719711 PMCID: PMC9972469 DOI: 10.1021/acssensors.2c01822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
The emergence of multi-drug-resistant Klebsiella pneumoniae (Kp) strains constitutes an enormous threat to global health as multi-drug resistance-associated treatment failure causes high mortality rates in nosocomial infections. Rapid pathogen detection and antibiotic resistance screening are therefore crucial for successful therapy and thus patient survival. Reporter phage-based diagnostics offer a way to speed up pathogen identification and resistance testing as integration of reporter genes into highly specific phages allows real-time detection of phage replication and thus living host cells. Kp-specific phages use the host's capsule, a major virulence factor of Kp, as a receptor for adsorption. To date, 80 different Kp capsule types (K-serotypes) have been described with predominant capsule types varying between different countries and continents. Therefore, reporter phages need to be customized according to the locally prevailing variants. Recently, we described the autographivirus vB_KpP_TUN1 (TUN1), which specifically infects Kp K64 strains, the most predominant capsule type at the military hospital in Tunis (MHT) that is also associated with high mortality rates. In this work, we developed the highly specific recombinant reporter phage rTUN1::nLuc, which produces nanoluciferase (nLuc) upon host infection and thus enables rapid detection of Kp K64 cells in clinical matrices such as blood and urine. At the same time, rTUN1::nLuc allows for rapid antibiotic susceptibility testing and therefore identification of suitable antibiotic treatment in less than 3 h.
Collapse
Affiliation(s)
- Peter Braun
- Bundeswehr Institute of
Microbiology, 80937Munich, Germany
| | - Rene Raab
- Bundeswehr Institute of
Microbiology, 80937Munich, Germany
| | | | - Simone Braun
- Bundeswehr Institute of
Microbiology, 80937Munich, Germany
| |
Collapse
|
6
|
Abstract
Urinary tract infection (UTI) is among the most common infections treated worldwide each year and is caused primarily by uropathogenic Escherichia coli (UPEC). Rising rates of antibiotic resistance among uropathogens have spurred a consideration of alternative treatment strategies, such as bacteriophage (phage) therapy; however, phage-bacterial interactions within the urinary environment are poorly defined. Here, we assess the activity of two phages, namely, HP3 and ES17, against clinical UPEC isolates using in vitro and in vivo models of UTI. In both bacteriologic medium and pooled human urine, we identified phage resistance arising within the first 6 to 8 h of coincubation. Whole-genome sequencing revealed that UPEC strains resistant to HP3 and ES17 harbored mutations in genes involved in lipopolysaccharide (LPS) biosynthesis. Phage-resistant strains displayed several in vitro phenotypes, including alterations to adherence to and invasion of human bladder epithelial HTB-9 cells and increased biofilm formation in some isolates. Interestingly, these phage-resistant UPEC isolates demonstrated reduced growth in pooled human urine, which could be partially rescued by nutrient supplementation and were more sensitive to several outer membrane-targeting antibiotics than parental strains. Additionally, phage-resistant UPEC isolates were attenuated in bladder colonization in a murine UTI model. In total, our findings suggest that while resistance to phages, such as HP3 and ES17, may arise readily in the urinary environment, phage resistance is accompanied by fitness costs which may render UPEC more susceptible to host immunity or antibiotics. IMPORTANCE UTI is one of the most common causes of outpatient antibiotic use, and rising antibiotic resistance threatens the ability to control UTI unless alternative treatments are developed. Bacteriophage (phage) therapy is gaining renewed interest; however, much like with antibiotics, bacteria can readily become resistant to phages. For successful UTI treatment, we must predict how bacteria will evade killing by phage and identify the downstream consequences of phage resistance during bacterial infection. In our current study, we found that while phage-resistant bacteria quickly emerged in vitro, these bacteria were less capable of growing in human urine and colonizing the murine bladder. These results suggest that phage therapy poses a viable UTI treatment if phage resistance confers fitness costs for the uropathogen. These results have implications for developing cocktails of phage with multiple different bacterial targets, of which each is evaded only at the cost of bacterial fitness.
Collapse
|
7
|
Rimon A, Gelman D, Yerushalmy O, Coppenhagen-Glazer S, Katvan E, Nir-Paz R, Hazan R. Phage Therapy in Israel, Past, Present, and Future. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:85-94. [PMID: 36157284 PMCID: PMC9436258 DOI: 10.1089/phage.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The fascinating scientific history of phage therapy has been documented in numerous publications. In this study, however, we focus on an angle of the story that hitherto has remained relatively neglected, namely, phage therapy treatments, and the protagonists that conducted these in Mandatory-Palestine and subsequently the state of Israel, as part of a global trend. We complete the story by describing efforts in the new era of phage therapy in present-day Israel.
Collapse
Affiliation(s)
- Amit Rimon
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Military Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Gelman
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Military Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ortal Yerushalmy
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Katvan
- Bar Ilan University, Ramat Gan, Israel
- Peres Academic Center, Rehovot, Israel
| | - Ran Nir-Paz
- Department of Clinical Microbiology and Infectious Diseases, Jerusalem, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronen Hazan
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Phage Therapy Potentiates Second-Line Antibiotic Treatment against Pneumonic Plague. Viruses 2022; 14:v14040688. [PMID: 35458417 PMCID: PMC9024586 DOI: 10.3390/v14040688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Plague pandemics and outbreaks have killed millions of people during the history of humankind. The disease, caused by the bacteria Yersinia pestis, is currently treated effectively with antibiotics. However, in the case of multidrug-resistant (MDR) bacteria, alternative treatments are required. Bacteriophage (phage) therapy has shown efficient antibacterial activity in various experimental animal models and in human patients infected with different MDR pathogens. Here, we evaluated the efficiency of фA1122 and PST phage therapy, alone or in combination with second-line antibiotics, using a well-established mouse model of pneumonic plague. Phage treatment significantly delayed mortality and limited bacterial proliferation in the lungs. However, the treatment did not prevent bacteremia, suggesting that phage efficiency may decrease in the circulation. Indeed, in vitro phage proliferation assays indicated that blood exerts inhibitory effects on lytic activity, which may be the major cause of treatment inefficiency. Combining phage therapy and second-line ceftriaxone treatment, which are individually insufficient, provided protection that led to the survival of all infected animals—a synergistic protective effect that represents a proof of concept for efficient combinatorial therapy in an emergency event of a plague outbreak involving MDR Y. pestis strains.
Collapse
|
9
|
An Improvement in Diagnostic Blood Culture Conditions Allows for the Rapid Detection and Isolation of the Slow Growing Pathogen Yersinia pestis. Pathogens 2022; 11:pathogens11020255. [PMID: 35215198 PMCID: PMC8874391 DOI: 10.3390/pathogens11020255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Plague, caused by the human pathogen Yersinia pestis, is a severe and rapidly progressing lethal disease that has caused millions of deaths globally throughout human history and still presents a significant public health concern, mainly in developing countries. Owing to the possibility of its malicious use as a bio-threat agent, Y. pestis is classified as a tier-1 select agent. The prompt administration of an effective antimicrobial therapy, essential for a favorable patient prognosis, requires early pathogen detection, identification and isolation. Although the disease rapidly progresses and the pathogen replicates at high rates within the host, Y. pestis exhibits a slow growth in vitro under routinely employed clinical culturing conditions, complicating the diagnosis and isolation. In the current study, the in vitro bacterial growth in blood cultures was accelerated by the addition of nutritional supplements. We report the ability of calcium (Ca+2)- and iron (Fe+2)-enriched aerobic blood culture media to expedite the growth of various virulent Y. pestis strains. Using a supplemented blood culture, a shortening of the doubling time from ~110 min to ~45 min could be achieved, resulting in increase of 5 order of magnitude in the bacterial loads within 24 h of incubation, consequently allowing the rapid detection and isolation of the slow growing Y. pestis bacteria. In addition, the aerobic and anaerobic blood culture bottles used in clinical set-up were compared for a Y. pestis culture in the presence of Ca+2 and Fe+2. The comparison established the superiority of the supplemented aerobic cultures for an early detection and achieved a significant increase in the yields of the pathogen. In line with the accelerated bacterial growth rates, the specific diagnostic markers F1 and LcrV (V) antigens could be directly detected significantly earlier. Downstream identification employing MALDI-TOF and immunofluorescence assays were performed directly from the inoculated supplemented blood culture, resulting in an increased sensitivity and without any detectable compromise of the accuracy of the antibiotic susceptibility testing (E-test), critical for subsequent successful therapeutic interventions.
Collapse
|
10
|
Moses S, Aftalion M, Mamroud E, Rotem S, Steinberger-Levy I. Reporter-Phage-Based Detection and Antibiotic Susceptibility Testing of Yersinia pestis for a Rapid Plague Outbreak Response. Microorganisms 2021; 9:1278. [PMID: 34208306 PMCID: PMC8231171 DOI: 10.3390/microorganisms9061278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Pneumonic plague is a lethal infectious disease caused by Yersinia pestis, a Tier-1 biothreat agent. Antibiotic treatment can save infected patients; however, therapy should begin within 24 h of symptom onset. As some Y. pestis strains showed an antibiotic resistance phenotype, an antibiotic susceptibility test (AST) must be performed. Performing the Clinical and Laboratory Standards Institute (CLSI)-recommended standard process, which includes bacterial isolation, enumeration and microdilution testing, lasts several days. Thus, rapid AST must be developed. As previously published, the Y. pestis-specific reporter phage ϕA1122::luxAB can serve for rapid identification and AST (ID-AST). Herein, we demonstrate the ability to use ϕA1122::luxAB to determine minimal inhibitory concentration (MIC) values and antibiotic susceptibility categories for various Y. pestis therapeutic antibiotics. We confirmed the assay by testing several nonvirulent Y. pestis isolates with reduced susceptibility to doxycycline or ciprofloxacin. Moreover, the assay can be performed directly on positive human blood cultures. Furthermore, as Y. pestis may naturally or deliberately be spread in the environment, we demonstrate the compatibility of this direct method for this scenario. This direct phage-based ID-AST shortens the time needed for standard AST to less than a day, enabling rapid and correct treatment, which may also prevent the spread of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Ida Steinberger-Levy
- Department of Biochemistry and Molecular Genetics, The Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (S.M.); (M.A.); (E.M.); (S.R.)
| |
Collapse
|