1
|
Lim WY, Lee JH, Choi Y, Yoon K. Verteporfin is an effective inhibitor of HCMV replication. Virus Res 2024; 350:199475. [PMID: 39362410 PMCID: PMC11492081 DOI: 10.1016/j.virusres.2024.199475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Human cytomegalovirus (HCMV), a double-stranded DNA virus from the Betaherpesvirinae subfamily, constitutes significant risks to newborns and immunocompromised individuals, potentially leading to severe neurodevelopmental disorders. The purpose of this study was to identify FDA-approved drugs that can inhibit HCMV replication through a drug repositioning approach. Using an HCMV progeny assay, verteporfin, a medication used as a photosensitizer in photodynamic therapy, was found to inhibit HCMV production in a dose-dependent manner, significantly reducing replication at concentrations as low as 0.5 µM, approximately 1/20th of the concentration used in anti-cancer research. Further analysis revealed that verteporfin did not interfere with HCMV host cell entry or nuclear transport but reduced viral mRNA and protein levels throughout the HCMV life cycle from the immediate-early stages. These results suggest that verteporfin has the potential to be rapidly and safely developed as a repurposed drug to inhibit HCMV infection.
Collapse
Affiliation(s)
- Woo Young Lim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Ju Hyun Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Youngju Choi
- Department of Microbiology, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Keejung Yoon
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea; College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea.
| |
Collapse
|
2
|
Tillmanns J, Kicuntod J, Ehring A, Elbasani E, Borst EM, Obergfäll D, Müller R, Hahn F, Marschall M. Establishment of a Luciferase-Based Reporter System to Study Aspects of Human Cytomegalovirus Infection, Replication Characteristics, and Antiviral Drug Efficacy. Pathogens 2024; 13:645. [PMID: 39204245 PMCID: PMC11356942 DOI: 10.3390/pathogens13080645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Human cytomegalovirus (HCMV) represents a highly medically important pathogen which has constantly been the subject of both molecular and clinical investigations. HCMV infections, especially those in high-risk patients, still raise many unanswered questions, so current investigations are focused on viral pathogenesis, vaccine development, and options for antiviral drug targeting. To this end, the use of suitable viral strains as well as recombinant reporter constructs in cultured cells and model systems has specific significance. We previously reported on the application of various herpesviruses that express green, red, or related fluorescent proteins, especially in the fields of virus-host interaction and antiviral research. Here, we characterized a recombinant version of the clinically relevant and cell type-adaptable HCMV strain TB40, which expresses firefly luciferase as a quantitative reporter of viral replication (TB40-FLuc). The data provide evidence for five main conclusions. First, HCMV TB40-FLuc is employable in multiple settings in primary human cells. Second, viral reporter signals are easily quantifiable, even at early time points within viral replication. Third, the FLuc reporter reflects the kinetics of viral intracellular replication, cascade-like viral IE-E-L protein production, and progeny release. Fourth, as relates to specific applications of the TB40-FLuc system, we demonstrated the reliability of quantitative antiviral compound determination in multi-well formats and its independence from fluorescence-based measurements in the case of autofluorescent inhibitors. Finally, we illustrated increased reporter sensitivity in comparison to other recombinant HCMVs. In essence, recombinant HCMV TB40-FLuc combines several molecular properties that are considered beneficial in studies on viral host tropism, replication efficiency, and antiviral drug assessment.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Antonia Ehring
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Endrit Elbasani
- Institute of Virology, Hannover Medical School (MHH), 30625 Hannover, Germany; (E.E.); (E.M.B.)
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School (MHH), 30625 Hannover, Germany; (E.E.); (E.M.B.)
| | - Debora Obergfäll
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Regina Müller
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| |
Collapse
|
3
|
Tillmanns J, Kicuntod J, Lösing J, Marschall M. 'Getting Better'-Is It a Feasible Strategy of Broad Pan-Antiherpesviral Drug Targeting by Using the Nuclear Egress-Directed Mechanism? Int J Mol Sci 2024; 25:2823. [PMID: 38474070 DOI: 10.3390/ijms25052823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Chen H, Lye MF, Gorgulla C, Ficarro SB, Cuny GD, Scott DA, Wu F, Rothlauf PW, Wang X, Fernandez R, Pesola JM, Draga S, Marto JA, Hogle JM, Arthanari H, Coen DM. A small molecule exerts selective antiviral activity by targeting the human cytomegalovirus nuclear egress complex. PLoS Pathog 2023; 19:e1011781. [PMID: 37976321 PMCID: PMC10691697 DOI: 10.1371/journal.ppat.1011781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/01/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Human cytomegalovirus (HCMV) is an important pathogen for which new antiviral drugs are needed. HCMV, like other herpesviruses, encodes a nuclear egress complex (NEC) composed of two subunits, UL50 and UL53, whose interaction is crucial for viral replication. To explore whether small molecules can exert selective antiviral activity by inhibiting NEC subunit interactions, we established a homogeneous time-resolved fluorescence (HTRF) assay of these interactions and used it to screen >200,000 compound-containing wells. Two compounds, designated GK1 and GK2, which selectively inhibited this interaction in the HTRF assay with GK1 also active in a co-immunoprecipitation assay, exhibited more potent anti-HCMV activity than cytotoxicity or activity against another herpesvirus. At doses that substantially reduced HCMV plaque formation, GK1 and GK2 had little or no effect on the expression of viral proteins and reduced the co-localization of UL53 with UL50 at the nuclear rim in a subset of cells. GK1 and GK2 contain an acrylamide moiety predicted to covalently interact with cysteines, and an analog without this potential lacked activity. Mass spectrometric analysis showed binding of GK2 to multiple cysteines on UL50 and UL53. Nevertheless, substitution of cysteine 214 of UL53 with serine (C214S) ablated detectable inhibitory activity of GK1 and GK2 in vitro, and the C214S substitution engineered into HCMV conferred resistance to GK1, the more potent of the two inhibitors. Thus, GK1 exerts selective antiviral activity by targeting the NEC. Docking studies suggest that the acrylamide tethers one end of GK1 or GK2 to C214 within a pocket of UL53, permitting the other end of the molecule to sterically hinder UL50 to prevent NEC formation. Our results prove the concept that targeting the NEC with small molecules can selectively block HCMV replication. Such compounds could serve as a foundation for development of anti-HCMV drugs and as chemical tools for studying HCMV.
Collapse
Affiliation(s)
- Han Chen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ming F. Lye
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Structural Biology, St. Jude’s Children’s Research Hospital, Memphis Tennessee United States of America
| | - Scott B. Ficarro
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States of America
| | - David A. Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Medicinal Chemistry Core, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Fan Wu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul W. Rothlauf
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoou Wang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rosio Fernandez
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean M. Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sorin Draga
- Virtual Discovery, Inc. Chestnut Hill, Massachusetts United States of America
- Non-Governmental Research Organization Biologic, Bucharest Romania
| | - Jarrod A. Marto
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Tillmanns J, Häge S, Borst EM, Wardin J, Eickhoff J, Klebl B, Wagner S, Wangen C, Hahn F, Socher E, Marschall M. Assessment of Covalently Binding Warhead Compounds in the Validation of the Cytomegalovirus Nuclear Egress Complex as an Antiviral Target. Cells 2023; 12:cells12081162. [PMID: 37190072 DOI: 10.3390/cells12081162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Herpesviral nuclear egress is a regulated process of viral capsid nucleocytoplasmic release. Due to the large capsid size, a regular transport via the nuclear pores is unfeasible, so that a multistage-regulated export pathway through the nuclear lamina and both leaflets of the nuclear membrane has evolved. This process involves regulatory proteins, which support the local distortion of the nuclear envelope. For human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the pUL50-pUL53 core that initiates multicomponent assembly with NEC-associated proteins and capsids. The transmembrane NEC protein pUL50 serves as a multi-interacting determinant that recruits regulatory proteins by direct and indirect contacts. The nucleoplasmic core NEC component pUL53 is strictly associated with pUL50 in a structurally defined hook-into-groove complex and is considered as the potential capsid-binding factor. Recently, we validated the concept of blocking the pUL50-pUL53 interaction by small molecules as well as cell-penetrating peptides or an overexpression of hook-like constructs, which can lead to a pronounced degree of antiviral activity. In this study, we extended this strategy by utilizing covalently binding warhead compounds, originally designed as binders of distinct cysteine residues in target proteins, such as regulatory kinases. Here, we addressed the possibility that warheads may likewise target viral NEC proteins, building on our previous crystallization-based structural analyses that revealed distinct cysteine residues in positions exposed from the hook-into-groove binding surface. To this end, the antiviral and NEC-binding properties of a selection of 21 warhead compounds were investigated. The combined findings are as follows: (i) warhead compounds exhibited a pronounced anti-HCMV potential in cell-culture-based infection models; (ii) computational analysis of NEC primary sequences and 3D structures revealed cysteine residues exposed to the hook-into-groove interaction surface; (iii) several of the active hit compounds exhibited NEC-blocking activity, as shown at the single-cell level by confocal imaging; (iv) the clinically approved warhead drug ibrutinib exerted a strong inhibitory impact on the pUL50-pUL53 core NEC interaction, as demonstrated by the NanoBiT assay system; and (v) the generation of recombinant HCMV ∆UL50-ΣUL53, allowing the assessment of viral replication under conditional expression of the viral core NEC proteins, was used for characterizing viral replication and a mechanistic evaluation of ibrutinib antiviral efficacy. Combined, the results point to a rate-limiting importance of the HCMV core NEC for viral replication and to the option of exploiting this determinant by the targeting of covalently NEC-binding warhead compounds.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Wardin
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH (LDC), 44227 Dortmund, Germany
- The Norwegian College of Fishery Science UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, FAU, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
6
|
Kicuntod J, Häge S, Lösing J, Kopar S, Muller YA, Marschall M. An antiviral targeting strategy based on the inducible interference with cytomegalovirus nuclear egress complex. Antiviral Res 2023; 212:105557. [PMID: 36796541 DOI: 10.1016/j.antiviral.2023.105557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The nucleocytoplasmic capsid egress of herpesviruses like the human cytomegalovirus (HCMV) is based on a uniquely regulated process. The core nuclear egress complex (NEC) of HCMV, represented by the pUL50-pUL53 heterodimer, is able to oligomerize and thus to build hexameric lattices. Recently, we and others validated the NEC as a novel target for antiviral strategies. So far, the experimental targeting approaches included the development of NEC-directed small molecules, cell-penetrating peptides and NEC-directed mutagenesis. Our postulate states that an interference with the hook-into-groove interaction of pUL50-pUL53 prevents NEC formation and strictly limits viral replication efficiency. Here, we provide an experimental proof-of-concept of the antiviral strategy: the inducible intracellular expression of a NLS-Hook-GFP construct exerted a pronounced level of antiviral activity. The data provide evidence for the following points: (i) generation of a primary fibroblast population with inducible NLS-Hook-GFP expression showed nuclear localization of the construct, (ii) interaction between NLS-Hook-GFP and the viral core NEC was found specific for cytomegaloviruses but not for other herpesviruses, (iii) construct overexpression exerted a strong antiviral activity against three strains of HCMV, (iv) confocal imaging demonstrated the interference with NEC nuclear rim formation in HCMV-infected cells, and (v) quantitative nuclear egress assay confirmed the block of viral nucleocytoplasmic transition and, consequently, an inhibitory effect onto viral cytoplasmic virion assembly complex (cVAC). Combined, data confirmed that the specific interference with protein-protein interaction of the HCMV core NEC represents an efficient antiviral targeting strategy.
Collapse
Affiliation(s)
- Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Serli Kopar
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, FAU, Erlangen, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
7
|
A Peptide Inhibitor of the Human Cytomegalovirus Core Nuclear Egress Complex. Pharmaceuticals (Basel) 2022; 15:ph15091040. [PMID: 36145260 PMCID: PMC9505826 DOI: 10.3390/ph15091040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
The replication of human cytomegalovirus (HCMV) involves a process termed nuclear egress, which enables translocation of newly formed viral capsids from the nucleus into the cytoplasm. The HCMV core nuclear egress complex (core NEC), a heterodimer of viral proteins pUL50 and pUL53, is therefore considered a promising target for new antiviral drugs. We have recently shown that a 29-mer peptide presenting an N-terminal alpha-helical hook-like segment of pUL53, through which pUL53 interacts with pUL50, binds to pUL50 with high affinity, and inhibits the pUL50–pUL53 interaction in vitro. Here, we show that this peptide is also able to interfere with HCMV infection of cells, as well as with core NEC formation in HCMV-infected cells. As the target of the peptide, i.e., the pUL50–pUL53 interaction, is localized at the inner nuclear membrane of the cell, the peptide had to be equipped with translocation moieties that facilitate peptide uptake into the cell and the nucleus, respectively. For the resulting fusion peptide (NLS-CPP-Hook), specific cellular and nuclear uptake into HFF cells, as well as inhibition of infection with HCMV, could be demonstrated, further substantiating the HCMV core NEC as a potential antiviral target.
Collapse
|
8
|
H M Ehrler J, Brunst S, Tjaden A, Kilu W, Heering J, Hernandez-Olmos V, Krommes A, Kramer JS, Steinhilber D, Schubert-Zsilavecz M, Müller-Knapp S, Merk D, Proschak E. Compilation and Evaluation of Fatty Acid Mimetics Screening Library. Biochem Pharmacol 2022; 204:115191. [PMID: 35907497 DOI: 10.1016/j.bcp.2022.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Focused compound libraries are well-established tools for hit identification in drug discovery and chemical probe development. We present the compilation and application of a focused screening library of fatty acid mimetics (FAMs), which are compounds designed to bind the orthosteric site proteins that endogenously accommodate natural fatty acids and lipid metabolites. This set complies with chemical properties of FAM and was found suitable for use also in cellular setting. Several hits were retrieved in screening the focused library against diverse fatty acid binding targets including the enzymes soluble epoxide hydrolase (sEH) and leukotriene A4 hydrolase (LTA4H), the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), the carrier proteins fatty acid binding protein 4 and 5 (FABP4 and FABP5), as well as the G-protein coupled receptors leukotriene B4 receptor 1 (BLT1) and free-fatty acid receptor 1 (FFAR1). Thus, the focused FAM library is suitable to obtain chemical starting matter for fatty acid binding proteins and valuable extends available screening collections.
Collapse
Affiliation(s)
- Johanna H M Ehrler
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Andrè Krommes
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Susanne Müller-Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Ludwig-Maximilians-Universität München, Department of Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany.
| |
Collapse
|
9
|
‘Come Together’—The Regulatory Interaction of Herpesviral Nuclear Egress Proteins Comprises both Essential and Accessory Functions. Cells 2022; 11:cells11111837. [PMID: 35681532 PMCID: PMC9180862 DOI: 10.3390/cells11111837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Herpesviral nuclear egress is a fine-tuned regulatory process that defines the nucleocytoplasmic release of viral capsids. Nuclear capsids are unable to traverse via nuclear pores due to the fact of their large size; therefore, herpesviruses evolved to develop a vesicular transport pathway mediating the transition across the two leaflets of the nuclear membrane. The entire process involves a number of regulatory proteins, which support the local distortion of the nuclear envelope. In the case of the prototype species of β-Herpesvirinae, the human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the core proteins pUL50 and pUL53 that oligomerize, form capsid docking lattices and mediate multicomponent assembly with NEC-associated viral and cellular proteins. The NEC-binding principle is based on the hook-into-groove interaction through an N-terminal hook-like pUL53 protrusion that embraces an α-helical pUL50 binding groove. Thus far, the function and characteristics of herpesviral core NECs have been well studied and point to the groove proteins, such as pUL50, as the multi-interacting, major determinants of NEC formation and egress. This review provides closer insight into (i) sequence and structure conservation of herpesviral core NEC proteins, (ii) experimentation on cross-viral core NEC interactions, (iii) the essential functional roles of hook and groove proteins for viral replication, (iv) an establishment of assay systems for NEC-directed antiviral research and (v) the validation of NEC as putative antiviral drug targets. Finally, this article provides new insights into the conservation, function and antiviral targeting of herpesviral core NEC proteins and, into the complex regulatory role of hook and groove proteins during the assembly, egress and maturation of infectious virus.
Collapse
|
10
|
The Oligomeric Assemblies of Cytomegalovirus Core Nuclear Egress Proteins Are Associated with Host Kinases and Show Sensitivity to Antiviral Kinase Inhibitors. Viruses 2022; 14:v14051021. [PMID: 35632762 PMCID: PMC9146606 DOI: 10.3390/v14051021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
The nucleo-cytoplasmic capsid egress of herpesviruses is a unique regulated process that ensures the efficiency of viral replication and release. For human cytomegalovirus (HCMV), the core of the nuclear egress complex (NEC) consists of the pUL50–pUL53 heterodimer that is able to oligomerize and thus to build hexameric lattices. These structures determine capsid binding and multicomponent protein interaction including NEC-associated host factors. The underlying characteristic of the core NEC formation is based on the N-terminal hook structure of pUL53 that binds into an alpha-helical groove of pUL50, and is thus described as a hook-into-groove interaction. This central regulatory element has recently been validated as a target of antiviral strategies, and first NEC-targeted prototypes of inhibitory small molecules were reported by our previous study. Here, we further analyzed the oligomerization properties of the viral NEC through an approach of chemical protein cross-linking. Findings were as follows: (i) a cross-link approach demonstrated the oligomeric state of the HCMV core NEC using material from HCMV-infected or plasmid-transfected cells, (ii) a Western blot-based identification of NEC-associated kinases using the cross-linked multicomponent NECs was successful, and (iii) we demonstrated the NEC-inhibitory and antiviral activity of specific inhibitors directed to these target kinases. Combined, the results strongly underline the functional importance of the oligomerization of the HCMV-specific NEC that is both phosphorylation-dependent and sensitive to antiviral kinase inhibitors.
Collapse
|
11
|
Properties of Oligomeric Interaction of the Cytomegalovirus Core Nuclear Egress Complex (NEC) and Its Sensitivity to an NEC Inhibitory Small Molecule. Viruses 2021; 13:v13030462. [PMID: 33799898 PMCID: PMC8002134 DOI: 10.3390/v13030462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Herpesviral nuclear egress is a regulated process shared by all family members, ensuring the efficient cytoplasmic release of viral capsids. In the case of human cytomegalovirus (HCMV), the core of the nuclear egress complex (NEC) consists of the pUL50-pUL53 heterodimer that builds hexameric lattices for capsid binding and multicomponent interaction, including NEC-associated host factors. A characteristic feature of NEC interaction is the N-terminal hook structure of pUL53 that binds to an alpha-helical groove of pUL50, thus termed as hook-into-groove interaction. This central regulatory element is essential for viral replication and shows structural–functional conservation, which has been postulated as a next-generation target of antiviral strategies. However, a solid validation of this concept has been missing. In the present study, we focused on the properties of oligomeric HCMV core NEC interaction and the antiviral activity of specifically targeted prototype inhibitors. Our data suggest the following: (i) transiently expressed, variably tagged versions of HCMV NEC proteins exert hook-into-groove complexes, putatively in oligomeric assemblies that are distinguishable from heterodimers, as shown by in vitro assembly and coimmunoprecipitation approaches; (ii) this postulated oligomeric binding pattern was further supported by the use of a pUL50::pUL53 fusion construct also showing a pronounced multi-interaction potency; (iii) using confocal imaging cellular NEC-associated proteins were found partly colocalized with the tagged core NECs; (iv) a small inhibitory molecule, recently identified by an in vitro binding inhibition assay, was likewise active in blocking pUL50–pUL53 oligomeric assembly and in exerting antiviral activity in HCMV-infected fibroblasts. In summary, the findings refine the previous concept of HCMV core NEC formation and nominate this drug-accessible complex as a validated antiviral drug target.
Collapse
|