1
|
de Aguiar ÉS, Dias AN, Sousa RM, Germano TA, de Sousa RO, Miranda RDS, Costa JH, dos Santos CP. Genome and Transcriptome Analyses of Genes Involved in Ascorbate Biosynthesis in Pepper Indicate Key Genes Related to Fruit Development, Stresses, and Phytohormone Exposures. PLANTS (BASEL, SWITZERLAND) 2023; 12:3367. [PMID: 37836106 PMCID: PMC10574469 DOI: 10.3390/plants12193367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Pepper (Capsicum annuum L.) is a vegetable consumed worldwide, primarily used for vitamin C uptake and condiment purposes. Ascorbate (Asc) is a multifunctional metabolite, acting as an antioxidant and enzymatic cofactor involved in multiple cellular processes. Nevertheless, there is no evidence about the contribution of biosynthesis pathways and regulatory mechanisms responsible for Asc reserves in pepper plants. Here, we present a genome- and transcriptome-wide investigation of genes responsible for Asc biosynthesis in pepper during fruit development, stresses, and phytohormone exposures. A total of 21 genes, scattered in ten of twelve pepper chromosomes were annotated. Gene expression analyses of nine transcriptomic experiments supported the primary role of the L-galactose pathway in the Asc-biosynthesizing process, given its constitutive, ubiquitous, and high expression profile observed in all studied conditions. However, genes from alternative pathways generally exhibited low expression or were unexpressed and appeared to play some secondary role under specific stress conditions and phytohormone treatments. Taken together, our findings provide a deeper spatio-temporal understanding of expression levels of genes involved in Asc biosynthesis, and they highlight GGP2, GME1 and 2, and GalLDH members from L-galactose pathway as promising candidates for future wet experimentation, addressing the attainment of increase in ascorbate content of peppers and other crops.
Collapse
Affiliation(s)
- Évelyn Silva de Aguiar
- Postgraduate Program in Environmental Sciences, Center of Sciences of Chapadinha, Federal University of Maranhão, Boa Vista, Chapadinha 65500-000, Maranhão, Brazil;
| | - Abigailde Nascimento Dias
- Center of Sciences of Chapadinha, Federal University of Maranhão, Boa Vista, Chapadinha 65500-000, Maranhão, Brazil; (A.N.D.); (R.M.S.)
| | - Raquel Mendes Sousa
- Center of Sciences of Chapadinha, Federal University of Maranhão, Boa Vista, Chapadinha 65500-000, Maranhão, Brazil; (A.N.D.); (R.M.S.)
| | - Thais Andrade Germano
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Ceará, Brazil; (T.A.G.); (J.H.C.)
| | - Renato Oliveira de Sousa
- Postgraduate Program in Agricultural Sciences, Campus Professora Cinobelina Elvas, Federal University of Piauí, Bom Jesus 64900-000, Piauí, Brazil; (R.O.d.S.); (R.d.S.M.)
| | - Rafael de Souza Miranda
- Postgraduate Program in Agricultural Sciences, Campus Professora Cinobelina Elvas, Federal University of Piauí, Bom Jesus 64900-000, Piauí, Brazil; (R.O.d.S.); (R.d.S.M.)
- Plant Science Department, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - José Hélio Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Ceará, Brazil; (T.A.G.); (J.H.C.)
| | - Clesivan Pereira dos Santos
- Postgraduate Program in Environmental Sciences, Center of Sciences of Chapadinha, Federal University of Maranhão, Boa Vista, Chapadinha 65500-000, Maranhão, Brazil;
- Center of Sciences of Chapadinha, Federal University of Maranhão, Boa Vista, Chapadinha 65500-000, Maranhão, Brazil; (A.N.D.); (R.M.S.)
| |
Collapse
|
2
|
Zhong X, Yang L, Li J, Tang Z, Wu C, Zhang L, Zhou X, Wang Y, Wang Z. Integrated next-generation sequencing and comparative transcriptomic analysis of leaves provides novel insights into the ethylene pathway of Chrysanthemum morifolium in response to a Chinese isolate of chrysanthemum virus B. Virol J 2022; 19:182. [DOI: 10.1186/s12985-022-01890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Chrysanthemum virus B (CVB), a key member of the genus Carlavirus, family Betaflexiviridae, causes severe viral diseases in chrysanthemum (Chrysanthemum morifolium) plants worldwide. However, information on the mechanisms underlying the response of chrysanthemum plants to CVB is scant.
Methods
Here, an integrated next-generation sequencing and comparative transcriptomic analysis of chrysanthemum leaves was conducted to explore the molecular response mechanisms of plants to a Chinese isolate of CVB (CVB-CN) at the molecular level.
Results
In total, 4934 significant differentially expressed genes (SDEGs) were identified to respond to CVB-CN, of which 4097 were upregulated and 837 were downregulated. Gene ontology and functional classification showed that the majority of upregulated SDEGs were categorized into gene cohorts involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, and ribosome metabolism. Enrichment analysis demonstrated that ethylene pathway-related genes were significantly upregulated following CVB-CN infection, indicating a strong promotion of ethylene biosynthesis and signaling. Furthermore, disruption of the ethylene pathway in Nicotiana benthamiana, a model plant, using virus-induced gene silencing technology rendered them more susceptible to cysteine-rich protein of CVB-CN induced hypersensitive response, suggesting a crucial role of this pathway in response to CVB-CN infection.
Conclusion
This study provides evidence that ethylene pathway has an essential role of plant in response to CVB and offers valuable insights into the defense mechanisms of chrysanthemum against Carlavirus.
Collapse
|