1
|
Chen S, Yao C, Tian N, Zhang C, Chen Y, Wang X, Jiang Y, Zhang T, Zeng T, Song Y. The interplay between persistent pathogen infections with tumor microenvironment and immunotherapy in cancer. Cancer Med 2024; 13:e70154. [PMID: 39240588 PMCID: PMC11378724 DOI: 10.1002/cam4.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Chronic infections by pathogenic microorganisms play a significant role in cancer development, disrupting the body's immune system and microenvironment. This interference impairs the body's ability to eliminate these microorganisms promptly, allowing them to persist by evading immune defenses. AIMS This study aimed to explore how chronic pathogenic infections influence the immune microenvironment, impacting tumorigenesis, cancer progression, and treatment strategies. Additionally, it seeks to investigate the effects of these infections on specific immune checkpoints and identify potential targets for immunotherapy. METHODS We conducted searches, readings, and detailed analyses of key terms in databases like PubMed and Web of Science to evaluate the impact of chronic infections by pathogenic microorganisms on the immune microenvironment. RESULTS Our analysis demonstrates a significant association between persistent chronic infections by pathogenic microorganisms and tumorigenesis. Notable impacts on the immune microenvironment include changes in immune cell function and the regulation of immune checkpoints, offering insights into potential targets for cancer immunotherapy. DISCUSSION This study highlights the complex relationship between chronic infections and cancer development, presenting new opportunities for cancer immunotherapy by understanding their effects on the immune microenvironment. The influence of these infections on immune checkpoints emphasizes the crucial role of the immune system in cancer treatment. CONCLUSION Chronic infections by pathogenic microorganisms greatly affect the immune microenvironment, tumorigenesis, and cancer treatment. Unraveling the underlying mechanisms can unveil potential targets for immunotherapy, improving our comprehension of the immune response to cancer and potentially leading to more effective cancer treatments in the future.
Collapse
Affiliation(s)
- Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Caihong Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Na Tian
- Anesthesiology Department, Qingdao Eighth People's Hospital, Qingdao, People's Republic of China
| | - Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yuemei Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Xuting Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Tonghao Zhang
- Department of Statistics, University of Virginia, Charlottesville, Virginia, USA
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Wang Y, Zhou Y, Huang Y, Li X, Zhang J, Gao Y, Qin F, Fu H, Wang S, Niu A, Guo R. Analyzing the characteristics of respiratory microbiota after the placement of an airway stent for malignant central airway obstruction. Microbiol Spectr 2024; 12:e0347223. [PMID: 38747599 PMCID: PMC11237529 DOI: 10.1128/spectrum.03472-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Abstract
Malignant central airway stenosis is treated with airway stent placement, but post-placement microbial characteristics remain unclear. We studied microbial features in 60 patients post-stent placement, focusing on changes during granulation tissue proliferation. Samples were collected before stent (N = 29), after stent on day 3 (N = 20), and after granulation tissue formation (AS-GTF, N = 43). Metagenomic sequencing showed significant respiratory tract microbiota changes with granulation tissue. The microbiota composition, dominated by Actinobacteria, Firmicutes, and Proteobacteria, was similar among the groups. At the species level, the AS-GTF group exhibited significant differences, with Peptostreptococcus stomatis and Achromobacter xylosoxidans enriched. Analysis based on tracheoesophageal fistula presence identified Tannerella forsythia and Stenotrophomonas maltophilia as the main differential species, enriched in the fistula subgroup. Viral and fungal detection showed Human gammaherpesvirus 4 and Candida albicans as the main species, respectively. These findings highlight microbiota changes after stent placement, potentially associated with granulation tissue proliferation, informing stent placement therapy and anti-infective treatment optimization. IMPORTANCE Malignant central airway stenosis is a life-threatening condition that can be effectively treated with airway stent placement. However, despite its clinical importance, the microbial characteristics of the respiratory tract following stent insertion remain poorly understood. This study addresses this gap by investigating the microbial features in patients with malignant central airway stenosis after stent placement, with a specific focus on microbial changes during granulation tissue proliferation. The findings reveal significant alterations in the diversity and structure of the respiratory tract microbiota following the placement of malignant central airway stents. Notably, certain bacterial species, including Peptostreptococcus stomatis and Achromobacter xylosoxidans, exhibit distinct patterns in the after-stent granulation tissue formation group. Additionally, the presence of tracheoesophageal fistula further influences the microbial composition. These insights provide valuable references for optimizing stent placement therapy and enhancing clinical anti-infective strategies.
Collapse
Affiliation(s)
- Yue Wang
- Graduate School of North China University of Technology, Tangshan, China
| | - Yunzhi Zhou
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Yan Huang
- Department of Respiratory and Critical Care Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xiaoli Li
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Jieli Zhang
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Yongping Gao
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Fang Qin
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Huaixiu Fu
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Shufang Wang
- Department of Respiratory and Critical Care Medicine, Emergency General Hospital, Beijing, China
| | - Anan Niu
- Graduate School of North China University of Technology, Tangshan, China
| | - Ruinan Guo
- Graduate School of North China University of Technology, Tangshan, China
| |
Collapse
|
4
|
Parveen R, Kashif M, Srinivasan H, Khan J, Yousif A, Ghataty DS, Ali N, Attia SM, Waseem M. An In Silico Investigation of Pharmacological Modulators and Inflammasomes in Glioblastoma Multiforme. Appl Biochem Biotechnol 2024; 196:2771-2797. [PMID: 37466884 DOI: 10.1007/s12010-023-04655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
For the past decades, inflammatory signals have been considered a possible key for pharmacological interventions. There are several compounds and/or molecules that have been known as most promising medication against inflammation and its mediated chronic disorders. Inflammasomes could be recognized as a trigger by detrimental stimuli as pathogenic attack and endogenous signals mediated injury inside the cells. In addition, there has been an inflammatory key mechanism involved in cancers including glioblastoma multiforme (GBM). GBM has been considered the foremost aggressive primary brain tumors in adult stage. There is a scattered beam of light on both cellular and molecular links in inflammation and GBM. However, the immune response of GBM has been characterized extensively by macrophages and lymphocytes related to tumors, and some recent investigations have pinpointed the focus of inflammasomes on the progression of GBM. Nevertheless, risk factors linked with GBM are still debatable. In our study, the most considerable compounds and their bonded and/or targeted proteins have depicted the most promising highlights under in silico condition. Our in silico investigations have revealed a powerful pharmacological agents/compound against inflammasome-mediated GBM.
Collapse
Affiliation(s)
- Roohi Parveen
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Mohd Kashif
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Hemalatha Srinivasan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Jasim Khan
- UAB Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amar Yousif
- School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Dina Saeed Ghataty
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Waseem
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
5
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
6
|
Alexandrova R, Tsachev I, Kirov P, Abudalleh A, Hristov H, Zhivkova T, Dyakova L, Baymakova M. Hepatitis E Virus (HEV) Infection Among Immunocompromised Individuals: A Brief Narrative Review. Infect Drug Resist 2024; 17:1021-1040. [PMID: 38505248 PMCID: PMC10948336 DOI: 10.2147/idr.s449221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus that belongs to Hepeviridae family. HEV is the most common cause of acute viral hepatitis worldwide. According to the World Health Organization (WHO), there are estimated 20 million HEV infections worldwide every year, leading to estimated 3.3 million symptomatic cases of HEV infection. The WHO estimates that HEV infection caused approximately 44,000 deaths in 2015, which represents 3.3% of mortality rates due to viral hepatitis. In low-income (LI) countries and lower-middle-income (LMI) countries, HEV is a waterborne infection induced by HEV genotype (gt) 1 and HEV gt 2 that cause large outbreaks and affect young individuals with a high mortality rate in pregnant women from South Asian countries and patients with liver diseases. HEV gt 3, HEV gt 4, and HEV gt 7 are responsible for sporadic infections with zoonotic transmission mainly through the consumption of raw or undercooked meat from different animals. Acute HEV infection is relatively asymptomatic or mild clinical form, in rare cases the disease can be moderate/severe clinical forms and result in fulminant hepatitis or acute liver failure (ALF). Furthermore, HEV infection is associated with extrahepatic manifestations, including renal and neurological clinical signs and symptoms. Pregnant women, infants, older people, immunocompromised individuals, patients with comorbidities, and workers who come into close contact with HEV-infected animals are recognized as major risk groups for severe clinical form of HEV infection and fatal outcome. Chronic HEV infection can occur in immunocompromised individuals with the possibility of progression to cirrhosis.
Collapse
Affiliation(s)
- Radostina Alexandrova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Plamen Kirov
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Abedulkadir Abudalleh
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Hristo Hristov
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Zhivkova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lora Dyakova
- Department of Synaptic Signaling and Communication, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| |
Collapse
|
7
|
Galati L, Chiantore MV, Marinaro M, Di Bonito P. Human Oncogenic Viruses: Characteristics and Prevention Strategies-Lessons Learned from Human Papillomaviruses. Viruses 2024; 16:416. [PMID: 38543781 PMCID: PMC10974567 DOI: 10.3390/v16030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Approximately 12% of human cancers worldwide are associated with infectious agents, which are classified by the International Agency for Research on Cancer (IARC) as Group 1 within the agents that are carcinogenic to humans. Most of these agents are viruses. Group 1 oncogenic viruses include hepatitis C virus, hepatitis B virus (HBV), human T-cell lymphotropic virus type 1, Epstein-Barr virus, Kaposi sarcoma-associated herpesvirus, human immunodeficiency virus-1 and high-risk human papillomaviruses (HPVs). In addition, some human polyomaviruses are suspected of inducing cancer prevalently in hosts with impaired immune responses. Merkel cell polyomavirus has been associated with Merkel cell carcinoma and included by the IARC in Group 2A (i.e., probably carcinogenic to humans). Linking viruses to human cancers has allowed for the development of diagnostic, prophylactic and therapeutic measures. Vaccination significantly reduced tumours induced by two oncogenic viruses as follows: HBV and HPV. Herein, we focus on mucosal alpha HPVs, which are responsible for the highest number of cancer cases due to tumour viruses and against which effective prevention strategies have been developed to reduce the global burden of HPV-related cancers.
Collapse
Affiliation(s)
- Luisa Galati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy;
| | - Maria Vincenza Chiantore
- Department of Infectious Diseases, Viral Hepatitis and Oncovirus and Retrovirus Diseases (EVOR) Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Mariarosaria Marinaro
- Department of Infectious Diseases, Microorganisms and Host Response: Research and Technological Innovation (MICROS) Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Paola Di Bonito
- Department of Infectious Diseases, Viral Hepatitis and Oncovirus and Retrovirus Diseases (EVOR) Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
8
|
Pu F, Guo H, Shi D, Chen F, Peng Y, Huang X, Liu J, Zhang Z, Shao Z. The generation and use of animal models of osteosarcoma in cancer research. Genes Dis 2024; 11:664-674. [PMID: 37692517 PMCID: PMC10491873 DOI: 10.1016/j.gendis.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor affecting children and adolescents. Currently, the most common treatment is surgery combined with neoadjuvant chemotherapy. Although the survival rate of patients with osteosarcoma has improved in recent years, it remains poor when the tumor(s) progress and distant metastases develop. Therefore, better animal models that more accurately replicate the natural progression of the disease are needed to develop improved prognostic and diagnostic markers, as well as targeted therapies for both primary and metastatic osteosarcoma. The present review described animal models currently being used in research investigating osteosarcoma, and their characteristics, advantages, and disadvantages. These models may help elucidate the pathogenic mechanism(s) of osteosarcoma and provide evidence to support and develop clinical treatment strategies.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Haoyu Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
9
|
Dasram MH, Naidoo P, Walker RB, Khamanga SM. Targeting the Endocannabinoid System Present in the Glioblastoma Tumour Microenvironment as a Potential Anti-Cancer Strategy. Int J Mol Sci 2024; 25:1371. [PMID: 38338649 PMCID: PMC10855826 DOI: 10.3390/ijms25031371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response. Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models. To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. The immune microenvironment accounts for a substantial volume of GBM tumours. The barriers to the treatment of glioblastoma with cannabinoids, such as crossing the blood-brain barrier and psychoactive and off-target side effects, can be alleviated with the use of nanocarrier drug delivery systems and functionalised ligands for improved specificity and targeting of pharmacological receptors and anti-cancer signalling pathways. This review has shown the presence of endocannabinoid receptors in the tumour microenvironment, which can be used as a potential unique target for specific drug delivery. Existing cannabinoid agents, studied previously, show anti-cancer potencies via signalling pathways associated with the hallmarks of cancer. The results of the review can be used to provide guidance in the design of future drug therapy for glioblastoma tumours.
Collapse
Affiliation(s)
| | | | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa (R.B.W.)
| |
Collapse
|
10
|
Aulestia-Viera PV, Rodrigues-Fernandes CI, Brandão TB, Rocha AC, Vargas PA, Lopes MA, Johnson NW, Kowalski LP, Ribeiro ACP, Santos-Silva AR. Malignant tumors affecting the head and neck region in ancient times: Comprehensive study of the CRAB Database. Braz Oral Res 2024; 38:e014. [PMID: 38198312 PMCID: PMC11376673 DOI: 10.1590/1807-3107bor-2024.vol38.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/29/2023] [Indexed: 01/12/2024] Open
Abstract
In the modern world, cancer is a growing cause of mortality, but archeological studies have shown that it is not exclusive to modern populations. The aim of this study is to examine the epidemiologic, social, and clinicopathologic features of head and neck cancers in ancient populations. To do this, we extracted all records that described malignant lesions in the head and neck region available in the Cancer Research in Ancient Bodies Database (CRAB). The estimated age, sex, physical condition of the remains (skeletonized, mummified), anatomic location of tumors, geographic location, chronology, tumor type, and methods of tumor diagnosis were collected. One hundred and sixty-seven cases were found, mostly originating from Europe (51.5%). Most records were of adults between 35 and 49 years of age (37.7%). The most involved site was the skullcap (60.4%), and the most common malignancies were metastases to the bone (65.3%) and multiple myeloma (17.4%). No primary soft tissue malignancies were registered. The results of our study indicate that head and neck cancers were present in ancient civilizations, at least since 500,000 BCE. The available data can help to improve the current understanding of the global distribution of head and neck cancer and its multidimensional impacts on populations in the contemporary world.
Collapse
Affiliation(s)
| | | | - Thaís Bianca Brandão
- Universidade de São Paulo - USP, School of Medicine, Dental Oncology Service, São Paulo, SP, Brazil
| | - André Caroli Rocha
- Universidade de São Paulo - USP, Medical School, Clínicas Hospital, São Paulo, SP, Brazil
| | - Pablo Agustin Vargas
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Oral Diagnosis Department, Piracicaba, SP, Brazil
| | - Marcio Ajudarte Lopes
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Oral Diagnosis Department, Piracicaba, SP, Brazil
| | | | - Luiz Paulo Kowalski
- Universidade de São Paulo - USP, Medical School, Head and Neck Surgery Department, São Paulo, SP, Brazil
| | | | - Alan Roger Santos-Silva
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Oral Diagnosis Department, Piracicaba, SP, Brazil
| |
Collapse
|
11
|
Joseph J, Sandel G, Kulkarni R, Alatrash R, Herrera BB, Jain P. Antibody and Cell-Based Therapies against Virus-Induced Cancers in the Context of HIV/AIDS. Pathogens 2023; 13:14. [PMID: 38251321 PMCID: PMC10821063 DOI: 10.3390/pathogens13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Infectious agents, notably viruses, can cause or increase the risk of cancer occurrences. These agents often disrupt normal cellular functions, promote uncontrolled proliferation and growth, and trigger chronic inflammation, leading to cancer. Approximately 20% of all cancer cases in humans are associated with an infectious pathogen. The International Agency for Research on Cancer (IARC) recognizes seven viruses as direct oncogenic agents, including Epstein-Barr Virus (EBV), Kaposi's Sarcoma-associated herpesvirus (KSHV), human T-cell leukemia virus type-1 (HTLV-1), human papilloma virus (HPV), hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus type 1 (HIV-1). Most viruses linked to increased cancer risk are typically transmitted through contact with contaminated body fluids and high-risk behaviors. The risk of infection can be reduced through vaccinations and routine testing, as well as recognizing and addressing risky behaviors and staying informed about public health concerns. Numerous strategies are currently in pre-clinical phases or undergoing clinical trials for targeting cancers driven by viral infections. Herein, we provide an overview of risk factors associated with increased cancer incidence in people living with HIV (PLWH) as well as other chronic viral infections, and contributing factors such as aging, toxicity from ART, coinfections, and comorbidities. Furthermore, we highlight both antibody- and cell-based strategies directed against virus-induced cancers while also emphasizing approaches aimed at discovering cures or achieving complete remission for affected individuals.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Grace Sandel
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Ratuja Kulkarni
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Reem Alatrash
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Pooja Jain
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| |
Collapse
|
12
|
Zhong S, Yang W, Zhang Z, Xie Y, Pan L, Ren J, Ren F, Li Y, Xie H, Chen H, Deng D, Lu J, Li H, Wu B, Chen Y, Peng F, Puduvalli VK, Sai K, Li Y, Cheng Y, Mou Y. Association between viral infections and glioma risk: a two-sample bidirectional Mendelian randomization analysis. BMC Med 2023; 21:487. [PMID: 38053181 PMCID: PMC10698979 DOI: 10.1186/s12916-023-03142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Glioma is one of the leading types of brain tumor, but few etiologic factors of primary glioma have been identified. Previous observational research has shown an association between viral infection and glioma risk. In this study, we used Mendelian randomization (MR) analysis to explore the direction and magnitude of the causal relationship between viral infection and glioma. METHODS We conducted a two-sample bidirectional MR analysis using genome-wide association study (GWAS) data. Summary statistics data of glioma were collected from the largest meta-analysis GWAS, involving 12,488 cases and 18,169 controls. Single-nucleotide polymorphisms (SNPs) associated with exposures were used as instrumental variables to estimate the causal relationship between glioma and twelve types of viral infections from corresponding GWAS data. In addition, sensitivity analyses were performed. RESULTS After correcting for multiple tests and sensitivity analysis, we detected that genetically predicted herpes zoster (caused by Varicella zoster virus (VZV) infection) significantly decreased risk of low-grade glioma (LGG) development (OR = 0.85, 95% CI: 0.76-0.96, P = 0.01, FDR = 0.04). No causal effects of the other eleven viral infections on glioma and reverse causality were detected. CONCLUSIONS This is one of the first and largest studies in this field. We show robust evidence supporting that genetically predicted herpes zoster caused by VZV infection reduces risk of LGG. The findings of our research advance understanding of the etiology of glioma.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Wenzhuo Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhiyun Zhang
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Yangyiran Xie
- Vanderbilt University School of Medicine, Vanderbilt University, 1161 21St Ave S # D3300, Nashville, TN, 37232, USA
| | - Lin Pan
- Clinical College, Jilin University, Street Xinmin 828, Changchun, People's Republic of China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People's Republic of China
| | - Fei Ren
- Clinical College, Jilin University, Street Xinmin 828, Changchun, People's Republic of China
| | - Yifan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Haoqun Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hongyu Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Davy Deng
- Dana Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Jie Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hui Li
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, People's Republic of China
| | - Bo Wu
- Department of Orthopaedics, The First Hospital of Jilin University, No.71, Street Xinmin Road, Chaoyang District, Changchun, Jilin, People's Republic of China
| | - Youqi Chen
- Clinical College, Jilin University, Street Xinmin 828, Changchun, People's Republic of China
| | - Fei Peng
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ke Sai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China.
| | - Ye Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Yonggao Mou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
13
|
Li T, Zeng Z, Fan C, Xiong W. Role of stress granules in tumorigenesis and cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189006. [PMID: 37913942 DOI: 10.1016/j.bbcan.2023.189006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Stress granules (SGs) are membrane-less organelles that cell forms via liquid-liquid phase separation (LLPS) under stress conditions such as oxidative stress, ER stress, heat shock and hypoxia. SG assembly is a stress-responsive mechanism by regulating gene expression and cellular signaling pathways. Cancer cells face various stress conditions in tumor microenvironment during tumorigenesis, while SGs contribute to hallmarks of cancer including proliferation, invasion, migration, avoiding apoptosis, metabolism reprogramming and immune evasion. Here, we review the connection between SGs and cancer development, the limitation of SGs on current cancer therapy and promising cancer therapeutic strategies targeting SGs in the future.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Alghamdi SS, Alshafi RA, Huwaizi S, Suliman RS, Mohammed AE, Alehaideb ZI, Alturki AY, Alghashem SA, Rahman I. Exploring in vitro and in silico Biological Activities of Calligonum Comosum and Rumex Vesicarius: Implications on Anticancer and Antibacterial Therapeutics. Saudi Pharm J 2023; 31:101794. [PMID: 37822695 PMCID: PMC10562755 DOI: 10.1016/j.jsps.2023.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction The adverse effects of clinically used anti-cancer medication and the rise in resistive micro-organisms have limited therapeutic options. Multiple anti-cancer drugs are derived from medicinal herbs which also have shown anti-bacterial effects. This study aimed to identify the optimal extraction solvent for detecting the cytotoxic and anti-bacterial effects of Calligonum comosum (C. Comosum) and Rumex vesicarius (R. Vesicarius) extracts. Additionally, the study aimed to identify active metabolites and assess their potential as future drug candidates for anti-cancer and anti-bacterial therapeutics. Methods Leaves from both plants were extracted using ethanol, ethyl acetate, chloroform, and water. The cytotoxic effects of the extracts were tested on liver, colon, and breast cancer cell lines. Apoptosis was assessed using High Content Imaging (HCI) and the ApoTox triplex Glo assay. The anti-bacterial effects were determined using agar-well diffusion. Liquid chromatography-mass spectrometry (LC-MS) was used to tentatively identify the secondary metabolites. In silico computational studies were conducted to determine the metabolites' mode of action, safety, and pharmacokinetic properties. Results The ethanolic extract of C. Comosum exhibited potent cytotoxicity on breast cancer cell lines, with IC50 values of 54.97 μg/mL and 58 μg/mL for KAIMRC2 and MDA-MB-231, respectively. It also induced apoptosis in colon and breast cancer cell lines. All tested extracts of C. Comosum and R. Vesicarius demonstrated anti-bacterial activity against Staphylococcus aureus and Escherichia coli. Seven active metabolites were identified, one of which is Kaempferol 3-O-Glucoside-7-O-Rhamnoside, which showed strong (predicted) anti-cancer activity. Kaempferol 3-O-Glucoside-7-O-Rhamnoside and Quercetin-3-O-Glucuronide also exhibited potential anti-bacterial effects on gram-positive and negative bacteria. Conclusion Ethanol extraction of C. Comosum solubilizes active metabolites with potential therapeutic applications in cancer treatment and bacterial infections. Kaempferol 3-O-Glucoside-7-O-Rhamnoside, in particular, shows promise as a dual therapeutic drug candidate for further research and development to improve its efficacy, safety, and pharmacokinetic profile.
Collapse
Affiliation(s)
- Sahar S. Alghamdi
- College of Pharmacy (COP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of the National Guard – Health Affairs, Riyadh 11426, Saudi Arabia
| | - Raghad A. Alshafi
- College of Pharmacy (COP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Rasha S. Suliman
- Pharmacy Department, Fatima College of Health Sciences (FCHS), Abu Dhabi, United Arab Emirates
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 16 84428, Riyadh 11671, Saudi Arabia
| | - Zeyad I. Alehaideb
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Allulu Y. Alturki
- College of Pharmacy (COP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Sara A. Alghashem
- College of Pharmacy (COP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
15
|
Jiang M, Yang Z, Dai J, Wu T, Jiao Z, Yu Y, Ning K, Chen W, Yang A. Intratumor microbiome: selective colonization in the tumor microenvironment and a vital regulator of tumor biology. MedComm (Beijing) 2023; 4:e376. [PMID: 37771912 PMCID: PMC10522974 DOI: 10.1002/mco2.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The polymorphic microbiome has been proposed as a new hallmark of cancer. Intratumor microbiome has been revealed to play vital roles in regulating tumor initiation and progression, but the regulatory mechanisms have not been fully uncovered. In this review, we illustrated that similar to other components in the tumor microenvironment, the reside and composition of intratumor microbiome are regulated by tumor cells and the surrounding microenvironment. The intratumor hypoxic, immune suppressive, and highly permeable microenvironment may select certain microbiomes, and tumor cells may directly interact with microbiome via molecular binding or secretions. Conversely, the intratumor microbiomes plays vital roles in regulating tumor initiation and progression via regulating the mutational landscape, the function of genes in tumor cells and modulating the tumor microenvironment, including immunity, inflammation, angiogenesis, stem cell niche, etc. Moreover, intratumor microbiome is regulated by anti-cancer therapies and actively influences therapy response, which could be a therapeutic target or engineered to be a therapy weapon in the clinic. This review highlights the intratumor microbiome as a vital component in the tumor microenvironment, uncovers potential mutual regulatory mechanisms between the tumor microenvironment and intratumor microbiome, and points out the ongoing research directions and drawbacks of the research area, which should broaden our view of microbiome and enlighten further investigation directions.
Collapse
Affiliation(s)
- Mingjie Jiang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zhongyuan Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Juanjuan Dai
- Department of Intensive Care UnitSun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Tong Wu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zan Jiao
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Yongchao Yu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Kang Ning
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Weichao Chen
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Ankui Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| |
Collapse
|
16
|
Di Sotto A, Valipour M, Azari A, Di Giacomo S, Irannejad H. Benzoindolizidine Alkaloids Tylophorine and Lycorine and Their Analogues with Antiviral, Anti-Inflammatory, and Anticancer Properties: Promises and Challenges. Biomedicines 2023; 11:2619. [PMID: 37892993 PMCID: PMC10603990 DOI: 10.3390/biomedicines11102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ongoing viral research, essential for public health due to evolving viruses, gains significance owing to emerging viral infections such as the SARS-CoV-2 pandemic. Marine and plant alkaloids show promise as novel potential pharmacological strategies. In this narrative review, we elucidated the potential of tylophorine and lycorine, two naturally occurring plant-derived alkaloids with a shared benzoindolizidine scaffold, as antiviral agents to be potentially harnessed against respiratory viral infections. Possible structure-activity relationships have also been highlighted. The substances and their derivatives were found to be endowed with powerful and broad-spectrum antiviral properties; moreover, they were able to counteract inflammation, which often underpins the complications of viral diseases. At last, their anticancer properties hold promise not only for advancing cancer research but also for mitigating the oncogenic effects of viruses. This evidence suggests that tylophorine and lycorine could effectively counteract the pathogenesis of respiratory viral disease and its harmful effects. Although common issues about the pharmacologic development of natural substances remain to be addressed, the collected evidence highlights a possible interest in tylophorine and lycorine as antiviral and/or adjuvant strategies and encourages future more in-depth pre-clinical and clinical investigations to overcome their drawbacks and harness their power for therapeutic purposes.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Aala Azari
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48471-93698, Iran;
| |
Collapse
|
17
|
Casciano F, Zauli E, Busin M, Caruso L, AlMesfer S, Al-Swailem S, Zauli G, Yu AC. State of the Art of Pharmacological Activators of p53 in Ocular Malignancies. Cancers (Basel) 2023; 15:3593. [PMID: 37509256 PMCID: PMC10377487 DOI: 10.3390/cancers15143593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The pivotal role of p53 in the regulation of a vast array of cellular functions has been the subject of extensive research. The biological activity of p53 is not strictly limited to cell cycle arrest but also includes the regulation of homeostasis, DNA repair, apoptosis, and senescence. Thus, mutations in the p53 gene with loss of function represent one of the major mechanisms for cancer development. As expected, due to its key role, p53 is expressed throughout the human body including the eye. Specifically, altered p53 signaling pathways have been implicated in the development of conjunctival and corneal tumors, retinoblastoma, uveal melanoma, and intraocular melanoma. As non-selective cancer chemotherapies as well as ionizing radiation can be associated with either poor efficacy or dose-limiting toxicities in the eye, reconstitution of the p53 signaling pathway currently represents an attractive target for cancer therapy. The present review discusses the role of p53 in the pathogenesis of these ocular tumors and outlines the various pharmacological activators of p53 that are currently under investigation for the treatment of ocular malignancies.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Saleh AlMesfer
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Samar Al-Swailem
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| |
Collapse
|
18
|
Bastos AR, Pereira-Marques J, Ferreira RM, Figueiredo C. Harnessing the Microbiome to Reduce Pancreatic Cancer Burden. Cancers (Basel) 2023; 15:cancers15092629. [PMID: 37174095 PMCID: PMC10177253 DOI: 10.3390/cancers15092629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer mortality is expected to rise in the next decades. This aggressive malignancy has a dismal prognosis due to late diagnosis and resistance to treatment. Increasing evidence indicates that host-microbiome interactions play an integral role in pancreatic cancer development, suggesting that harnessing the microbiome might offer promising opportunities for diagnostic and therapeutic interventions. Herein, we review the associations between pancreatic cancer and the intratumoral, gut and oral microbiomes. We also explore the mechanisms with which microbes influence cancer development and the response to treatment. We further discuss the potentials and limitations of using the microbiome as a target for therapeutic interventions, in order to improve pancreatic cancer patient outcomes.
Collapse
Affiliation(s)
- Ana Raquel Bastos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Pereira-Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Rui Manuel Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Ceu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
19
|
Zhang Y, Xiang X, Zhou S, Dindar DA, Wood S, Zhang Z, Shan B, Zhao L. Relationship between pathogenic microorganisms and the occurrence of esophageal carcinoma based on pathological type: a narrative review. Expert Rev Gastroenterol Hepatol 2023; 17:353-361. [PMID: 36896656 DOI: 10.1080/17474124.2023.2189099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Esophageal cancer (EC) is one of the most common malignant tumors of the upper gastrointestinal tract. The etiology of EC is complicated and increasing evidence has shown that microbial infection is closely related to the occurrence of various malignant tumors. Though many studies have been focused on this subject in recent years, the exact relationship between microbial infection and the occurrence of EC remains unclear. AREAS COVERED In this review, we searched all eligible literature reports, summarized the most recent studies in this research field, and analyzed the pathogenic microorganisms associated with EC, providing the latest evidence and references for the prevention of pathogenic microorganism-related EC. EXPERT OPINION In recent years, increasing evidence has shown that pathogenic microbial infections are closely associated with the development of EC. Therefore, it is necessary to describe in detail the relationship between microbial infection and EC and clarify its possible pathogenic mechanism, which will shed a light on clinical prevention and treatment of cancer caused by pathogenic microbial infection.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohan Xiang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaolan Zhou
- Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Duygu Altinok Dindar
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie Wood
- Division of Gastrointestinal and General Surgery, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Zhenzhen Zhang
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Baoen Shan
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
20
|
Yusuf K, Sampath V, Umar S. Bacterial Infections and Cancer: Exploring This Association And Its Implications for Cancer Patients. Int J Mol Sci 2023; 24:3110. [PMID: 36834525 PMCID: PMC9958598 DOI: 10.3390/ijms24043110] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bacterial infections are common in the etiology of human diseases owing to the ubiquity of bacteria. Such infections promote the development of periodontal disease, bacterial pneumonia, typhoid, acute gastroenteritis, and diarrhea in susceptible hosts. These diseases may be resolved using antibiotics/antimicrobial therapy in some hosts. However, other hosts may be unable to eliminate the bacteria, allowing them to persist for long durations and significantly increasing the carrier's risk of developing cancer over time. Indeed, infectious pathogens are modifiable cancer risk factors, and through this comprehensive review, we highlight the complex relationship between bacterial infections and the development of several cancer types. For this review, searches were performed on the PubMed, Embase, and Web of Science databases encompassing the entirety of 2022. Based on our investigation, we found several critical associations, of which some are causative: Porphyromonas gingivalis and Fusobacterium nucleatum are associated with periodontal disease, Salmonella spp., Clostridium perfringens, Escherichia coli, Campylobacter spp., and Shigella are associated with gastroenteritis. Helicobacter pylori infection is implicated in the etiology of gastric cancer, and persistent Chlamydia infections present a risk factor for the development of cervical carcinoma, especially in patients with the human papillomavirus (HPV) coinfection. Salmonella typhi infections are linked with gallbladder cancer, and Chlamydia pneumoniae infection is implicated in lung cancer, etc. This knowledge helps identify the adaptation strategies used by bacteria to evade antibiotic/antimicrobial therapy. The article also sheds light on the role of antibiotics in cancer treatment, the consequences of their use, and strategies for limiting antibiotic resistance. Finally, the dual role of bacteria in cancer development as well as in cancer therapy is briefly discussed, as this is an area that may help to facilitate the development of novel microbe-based therapeutics as a means of securing improved outcomes.
Collapse
Affiliation(s)
- Kafayat Yusuf
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Venkatesh Sampath
- Department of Pediatrics and Gastroenterology, Children’s Mercy Hospital, Kansas City, KS 66160, USA
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
21
|
Yu J, Zhou Y, Luo H, Su X, Gan T, Wang J, Ye Z, Deng Z, He J. Mycoplasma genitalium infection in the female reproductive system: Diseases and treatment. Front Microbiol 2023; 14:1098276. [PMID: 36896431 PMCID: PMC9989269 DOI: 10.3389/fmicb.2023.1098276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Mycoplasma genitalium is a newly emerged sexually transmitted disease pathogen and an independent risk factor for female cervicitis and pelvic inflammatory disease. The clinical symptoms caused by M. genitalium infection are mild and easily ignored. If left untreated, M. genitalium can grow along the reproductive tract and cause salpingitis, leading to infertility and ectopic pregnancy. Additionally, M. genitalium infection in late pregnancy can increase the incidence of preterm birth. M. genitalium infections are often accompanied by co-infection with other sexually transmitted pathogens (Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis) and viral infections (Human Papilloma Virus and Human Immunodeficiency Virus). A recent study suggested that M. genitalium plays a role in tumor development in the female reproductive system. However, few studies endorsed this finding. In recent years, M. genitalium has evolved into a new "superbug" due to the emergence of macrolide-and fluoroquinolone-resistant strains leading to frequent therapy failures. This review summarizes the pathogenic characteristics of M. genitalium and the female reproductive diseases caused by M. genitalium (cervicitis, pelvic inflammatory disease, ectopic pregnancy, infertility, premature birth, co-infection, reproductive tumors, etc.), as well as its potential relationship with reproductive tumors and clinical treatment.
Collapse
Affiliation(s)
- Jianwei Yu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Zhou
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Tian Gan
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhongliang Deng
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
22
|
Dimitraki MG, Sourvinos G. Merkel Cell Polyomavirus (MCPyV) and Cancers: Emergency Bell or False Alarm? Cancers (Basel) 2022; 14:cancers14225548. [PMID: 36428641 PMCID: PMC9688650 DOI: 10.3390/cancers14225548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV), the sole member of Polyomavirus associated with oncogenesis in humans, is the major causative factor of Merkel cell carcinoma (MCC), a rare, neuroendocrine neoplasia of the skin. Many aspects of MCPyV biology and oncogenic mechanisms remain poorly understood. However, it has been established that oncogenic transformation is the outcome of the integration of the viral genome into the host DNA. The high prevalence of MCPyV in the population, along with the detection of the virus in various human tissue samples and the strong association of MCPyV with the emergence of MCC, have prompted researchers to further investigate the role of MCPyV in malignancies other than MCC. MCPyV DNA has been detected in several different non-MCC tumour tissues but with significantly lower prevalence, viral load and protein expression. Moreover, the two hallmarks of MCPyV MCC have rarely been investigated and the studies have produced generally inconsistent results. Therefore, the outcomes of the studies are inadequate and unable to clearly demonstrate a direct correlation between cellular transformation and MCPyV. This review aims to present a comprehensive recapitulation of the available literature regarding the association of MCPyV with oncogenesis (MCC and non-MCC tumours).
Collapse
|
23
|
Ivleva EA, Grivennikov SI. Microbiota-driven mechanisms at different stages of cancer development. Neoplasia 2022; 32:100829. [PMID: 35933824 PMCID: PMC9364013 DOI: 10.1016/j.neo.2022.100829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
A myriad of microbes living together with the host constitutes the microbiota, and the microbiota exerts very diverse functions in the regulation of host physiology. Microbiota regulates cancer initiation, progression, metastasis, and responses to therapy. Here we review known pro-tumorigenic and anti-tumorigenic functions of microbiota, and mechanisms of how microbes can shape tumor microenvironment and affect cancer cells as well as activation and functionality of immune and stromal cells within the tumor. While some of these mechanisms are distal, often distinct members of microbiota travel with and establish colonization with the tumors in the distant organs. We further briefly describe recent findings regarding microbiota composition in metastasis and highlight important future directions and considerations for the manipulation of microbiota for cancer treatment.
Collapse
Affiliation(s)
- Elena A Ivleva
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sergei I Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
24
|
Hafez Ghoran S, Calcaterra A, Abbasi M, Taktaz F, Nieselt K, Babaei E. Curcumin-Based Nanoformulations: A Promising Adjuvant towards Cancer Treatment. Molecules 2022; 27:molecules27165236. [PMID: 36014474 PMCID: PMC9414608 DOI: 10.3390/molecules27165236] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Throughout the United States, cancer remains the second leading cause of death. Traditional treatments induce significant medical toxic effects and unpleasant adverse reactions, making them inappropriate for long-term use. Consequently, anticancer-drug resistance and relapse are frequent in certain situations. Thus, there is an urgent necessity to find effective antitumor medications that are specific and have few adverse consequences. Curcumin is a polyphenol derivative found in the turmeric plant (Curcuma longa L.), and provides chemopreventive, antitumor, chemo-, and radio-sensitizing properties. In this paper, we summarize the new nano-based formulations of polyphenolic curcumin because of the growing interest in its application against cancers and tumors. According to recent studies, the use of nanoparticles can overcome the hydrophobic nature of curcumin, as well as improving its stability and cellular bioavailability in vitro and in vivo. Several strategies for nanocurcumin production have been developed, each with its own set of advantages and unique features. Because the majority of the curcumin-based nanoformulation evidence is still in the conceptual stage, there are still numerous issues impeding the provision of nanocurcumin as a possible therapeutic option. To support the science, further work is necessary to develop curcumin as a viable anti-cancer adjuvant. In this review, we cover the various curcumin nanoformulations and nanocurcumin implications for therapeutic uses for cancer, as well as the current state of clinical studies and patents. We further address the knowledge gaps and future research orientations required to develop curcumin as a feasible treatment candidate.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran
- Medicinal Plant Breeding and Development Research Institute, University of Kurdistan, Sanandaj 66177-15175, Iran
- Correspondence: (S.H.G.); or (E.B.); Tel.: +98-9144425047 (S.H.G.); Tel.: +98-4133392686 (E.B.)
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza–University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71336-54361, Iran
| | - Fatemeh Taktaz
- Department of Biology, Faculty of Sciences, University of Hakim Sabzevari, Sabzevar 96179-76487, Iran
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Kay Nieselt
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Esmaeil Babaei
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz 51666-16471, Iran
- Correspondence: (S.H.G.); or (E.B.); Tel.: +98-9144425047 (S.H.G.); Tel.: +98-4133392686 (E.B.)
| |
Collapse
|
25
|
Rein A. Stephen Oroszlan and Retroviral Proteins. Viruses 2022; 14:v14020290. [PMID: 35215882 PMCID: PMC8878580 DOI: 10.3390/v14020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
26
|
Ezema CA, Ezeorba TPC, Aguchem RN, Okagu IU. Therapeutic benefits of Salvia species: A focus on cancer and viral infection. Heliyon 2022; 8:e08763. [PMID: 35146151 PMCID: PMC8819530 DOI: 10.1016/j.heliyon.2022.e08763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Man is increasingly being faced with many health conditions, including viral infection, some of which increases the risk to cancer. These infectious agents contribute to the large number of persons with cancer and the worrisome number that die from the diseases. A good range of drugs are currently in place for treating patients infected with viruses, however, some of the drugs' effectiveness are limited by the emergence of drug-resistant strains of the viruses, as well as adverse effects of the drugs. Similarly, the inability of many anticancer drugs to selectively kill cancer cells while sparing hosts' normal cells limit their use. This warrants more research for newer drugs, especially from chemicals naturally encrypted in plants with anticancer and antiviral activities. In response to infection with cancer-inducing viruses, plants such as Salvia species synthesize and store secondary metabolites to protect themselves and kill these viruses as well as inhibit their ability to induce carcinogenesis. Hence, this review presented a discussion on the potential application of Salvia species in the prevention and management of cancer and viral infection. The study also discusses the cellular mechanisms of action of these herbal products against cancer cells and viruses, where available and provided suggestions on future research directions. The study is believed to spur more research on how to exploit Salvia phytochemicals as candidates for the development of nutraceuticals and drugs for managing cancers and viral infection.
Collapse
Affiliation(s)
- Chinonso Anthony Ezema
- Department of Microbiology, University of Nigeria, Nsukka, 410001, Nigeria
- Division of Soft Matter, Hokkaido University, Sapporo, 060-0810, Japan
| | | | - Rita Ngozi Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka, 410001, Nigeria
| | | |
Collapse
|
27
|
Orendain-Jaime EN, Serafín-Higuera N, Leija-Montoya AG, Martínez-Coronilla G, Moreno-Trujillo M, Sánchez-Muñoz F, Ruiz-Hernández A, González-Ramírez J. MicroRNAs Encoded by Virus and Small RNAs Encoded by Bacteria Associated with Oncogenic Processes. Processes (Basel) 2021; 9:2234. [DOI: 10.3390/pr9122234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Cancer is a deadly disease and, globally, represents the second leading cause of death in the world. Although it is a disease where several factors can help its development, virus induced infections have been associated with different types of neoplasms. However, in bacterial infections, their participation is not known for certain. Among the proposed approaches to oncogenesis risks in different infections are microRNAs (miRNAs). These are small molecules composed of RNA with a length of 22 nucleotides capable of regulating gene expression by directing protein complexes that suppress the untranslated region of mRNA. These miRNAs and other recently described, such as small RNAs (sRNAs), are deregulated in the development of cancer, becoming promising biomarkers. Thus, resulting in a study possibility, searching for new tools with diagnostic and therapeutic approaches to multiple oncological diseases, as miRNAs and sRNAs are main players of gene expression and host–infectious agent interaction. Moreover, sRNAs with limited complementarity are similar to eukaryotic miRNAs in their ability to modulate the activity and stability of multiple mRNAs. Here, we will describe the regulatory RNAs from viruses that have been associated with cancer and how sRNAs in bacteria can be related to this disease.
Collapse
Affiliation(s)
- Erika Nallely Orendain-Jaime
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico
| | - Nicolás Serafín-Higuera
- Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico
| | - Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico
| | - Gustavo Martínez-Coronilla
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico
| | - Misael Moreno-Trujillo
- Departamento de Cuidados Intensivos, Hospital de Gineco-Pediatría #31, Instituto Mexicano del Seguro Social, Av. Sebastián Lerdo de Tejada S/N, Col. Nueva, Mexicali 21100, BC, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Sección XVI, Tlalpan 140080, DF, Mexico
| | - Armando Ruiz-Hernández
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico
| |
Collapse
|