1
|
Nyenhuis DA, Watanabe SM, Tjandra N, Carter CA. Tsg101 mimicry of canonical E2 enzymes underlies its role in ubiquitin signaling. Proc Natl Acad Sci U S A 2025; 122:e2419542121. [PMID: 39739800 PMCID: PMC11725782 DOI: 10.1073/pnas.2419542121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025] Open
Abstract
Tsg101 is a highly conserved protein best known as an early-functioning component of cellular ESCRT machinery participating in recognition, sorting, and trafficking of cellular cargo to various intracellular destinations. It shares sequence and structural homology to canonical ubiquitin-conjugating (E2) enzymes and is linked to diverse events regulated by Ub signaling. How it might fulfill these roles is unclear. Here, we show that Tsg101 E2 mimicry permits interactions with diverse ubiquitin ligating (E3) enzymes and underlies its multifunctional capabilities. Coexpression of Tsg101 with the E3 ligase NNedd4-2s protected the enzyme from degradation and, remarkably, other widely divergent ligases as well. Structural alignment with UbcH5, a canonical E2 enzyme, revealed that recognition at the E2-E3 interface, a region broadly conserved despite sequence and structural differences in both E2 and E3 enzymes, was critical for protection. Nevertheless, UbcH5 failed to protect NNedd4-2s, indicating that the UEV chaperone function is unique to the variant. Studies using Cy5-Ub-VME showed that Tsg101-mediated protection reduced accessibility to Cys residues in the ligase. Access to Tsg101 Ub-binding sites was critical: Rabeprazole, which interferes with Tsg101 Ub-binding, diminished E3 ligase protection. Thus, E2 mimicry permitting control of E3 ligase ubiquitin signaling underlies Tsg101's broad ability to participate in multiple cellular functions. The study provides mechanistic insight into how Tsg101, by partnering with diverse E3 ligases, can contribute to a broad range of cellular activities.
Collapse
Affiliation(s)
- David A. Nyenhuis
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20982
| | - Susan M. Watanabe
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794-5222
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20982
| | - Carol A. Carter
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794-5222
| |
Collapse
|
2
|
Watanabe SM, Nyenhuis DA, Khan M, Ehrlich LS, Ischenko I, Powell MD, Tjandra N, Carter CA. Tsg101 UEV Interaction with Nedd4 HECT Relieves E3 Ligase Auto-Inhibition, Promoting HIV-1 Assembly and CA-SP1 Maturation Cleavage. Viruses 2024; 16:1566. [PMID: 39459900 PMCID: PMC11512315 DOI: 10.3390/v16101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Tsg101, a component of the endosomal sorting complex required for transport (ESCRT), is responsible for recognition of events requiring the machinery, as signaled by cargo tagging with ubiquitin (Ub), and for recruitment of downstream acting subunits to the site. Although much is known about the latter function, little is known about its role in the earlier event. The N-terminal domain of Tsg101 is a structural homologue of Ub conjugases (E2 enzymes) and the protein associates with Ub ligases (E3 enzymes) that regulate several cellular processes including virus budding. A pocket in the domain recognizes a motif, PT/SAP, that permits its recruitment. PT/SAP disruption makes budding dependent on Nedd4L E3 ligases. Using HIV-1 encoding a PT/SAP mutation that makes budding Nedd4L-dependent, we identified as critical for rescue the residues in the catalytic (HECT) domain of the E3 enzyme that lie in proximity to sites in Tsg101 that bind Ub non-covalently. Mutation of these residues impaired rescue by Nedd4L but the same mutations had no apparent effect in the context of a Nedd4 isomer, Nedd4-2s, whose N-terminal (C2) domain is naturally truncated, precluding C2-HECT auto-inhibition. Surprisingly, like small molecules that disrupt Tsg101 Ub-binding, small molecules that interfered with Nedd4 substrate recognition arrested budding at an early stage, supporting the conclusion that Tsg101-Ub-Nedd4 interaction promotes enzyme activation and regulates Nedd4 signaling for viral egress. Tsg101 regulation of E3 ligases may underlie its broad ability to function as an effector in various cellular activities, including viral particle assembly and budding.
Collapse
Affiliation(s)
- Susan M. Watanabe
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - David A. Nyenhuis
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (D.A.N.); (N.T.)
| | - Mahfuz Khan
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.K.); (M.D.P.)
| | - Lorna S. Ehrlich
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - Irene Ischenko
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - Michael D. Powell
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.K.); (M.D.P.)
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (D.A.N.); (N.T.)
| | - Carol A. Carter
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| |
Collapse
|
3
|
Nyenhuis DA, Watanabe S, Bernstein R, Swenson RE, Raju N, Sabbasani VR, Mushti C, Lee D, Carter C, Tjandra N. Structural Relationships to Efficacy for Prazole-Derived Antivirals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308312. [PMID: 38447164 PMCID: PMC11095225 DOI: 10.1002/advs.202308312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Here, an in vitro characterization of a family of prazole derivatives that covalently bind to the C73 site on Tsg101 and assay their ability to inhibit viral particle production is presented. Structurally, increased steric bulk on the 4-pyridyl of the prazole expands the prazole site on the UEV domain toward the β-hairpin in the Ub-binding site and is coupled to increased inhibition of virus-like particle production in HIV-1. Increased bulk also increased toxicity, which is alleviated by increasing flexibility. Further, the formation of a novel secondary Tsg101 adduct for several of the tested compounds and the commercial drug lansoprazole. The secondary adduct involved the loss of the 4-pyridyl substituent to form an irreversible species, with implications for increasing the half-life of the active species or its specificity toward Tsg101 UEV. It is also determined that sulfide derivatives display effective viral inhibition, presumably through cellular sulfoxidation, allowing for delayed conversion within the cellular environment, and identify SARS-COV-2 as a target of prazole inhibition. These results open multiple avenues for the design of prazole derivatives for antiviral applications.
Collapse
Affiliation(s)
- David A. Nyenhuis
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| | - Susan Watanabe
- Department of Microbiology and ImmunologyRenaissance School of MedicineStonybrook UniversityLife Sciences Bldg, Rm 248StonybrookNY11790USA
| | - Rebecca Bernstein
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| | - Rolf E. Swenson
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Natarajan Raju
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Venkata R. Sabbasani
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Chandrasekhar Mushti
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Duck‐Yeon Lee
- Biochemistry Core FacilityNHLBINIHBethesdaMD20892USA
| | - Carol Carter
- Department of Microbiology and ImmunologyRenaissance School of MedicineStonybrook UniversityLife Sciences Bldg, Rm 248StonybrookNY11790USA
| | - Nico Tjandra
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| |
Collapse
|
4
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. ESCRT machinery and virus infection. Antiviral Res 2024; 221:105786. [PMID: 38147902 DOI: 10.1016/j.antiviral.2023.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yiyi Feng
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Nyenhuis DA, Rajasekaran R, Watanabe S, Strub MP, Khan M, Powell M, Carter CA, Tjandra N. HECT domain interaction with ubiquitin binding sites on Tsg101-UEV controls HIV-1 egress, maturation, and infectivity. J Biol Chem 2023; 299:102901. [PMID: 36642186 PMCID: PMC9944984 DOI: 10.1016/j.jbc.2023.102901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The HECT domain of HECT E3 ligases consists of flexibly linked N- and C-terminal lobes, with a ubiquitin (Ub) donor site on the C-lobe that is directly involved in substrate modification. HECT ligases also possess a secondary Ub binding site in the N-lobe, which is thought to play a role in processivity, specificity, or regulation. Here, we report the use of paramagnetic solution NMR to characterize a complex formed between the isolated HECT domain of neural precursor cell-expressed developmentally downregulated 4-1 and the ubiquitin E2 variant (UEV) domain of tumor susceptibility gene 101 (Tsg101). Both proteins are involved in endosomal trafficking, a process driven by Ub signaling, and are hijacked by viral pathogens for particle assembly; however, a direct interaction between them has not been described, and the mechanism by which the HECT E3 ligase contributes to pathogen formation has not been elucidated. We provide evidence for their association, consisting of multiple sites on the neural precursor cell-expressed developmentally downregulated 4-1 HECT domain and elements of the Tsg101 UEV domain involved in noncovalent ubiquitin binding. Furthermore, we show using an established reporter assay that HECT residues perturbed by UEV proximity define determinants of viral maturation and infectivity. These results suggest the UEV interaction is a determinant of HECT activity in Ub signaling. As the endosomal trafficking pathway is hijacked by several human pathogens for egress, the HECT-UEV interaction could represent a potential novel target for therapeutic intervention.
Collapse
Affiliation(s)
- David A. Nyenhuis
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rohith Rajasekaran
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Susan Watanabe
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahfuz Khan
- Department of Microbiology & Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Michael Powell
- Department of Microbiology & Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Carol A. Carter
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA,For correspondence: Nico Tjandra; Carol A. Carter
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
6
|
Abstract
Ubiquitination is a posttranslational modification that regulates a multitude of cellular functions. Pathogens, such as bacteria and viruses, have evolved sophisticated mechanisms that evade or counteract ubiquitin-dependent host responses, or even exploit the ubiquitin system to their own advantage. This is largely done by numerous pathogen virulence factors that encode E3 ligases and deubiquitinases, which are often used as weapons in pathogen-host cell interactions. Moreover, upon pathogen attack, host cellular signaling networks undergo major ubiquitin-dependent changes to protect the host cell, including coordination of innate immunity, remodeling of cellular organelles, reorganization of the cytoskeleton, and reprogramming of metabolic pathways to restrict growth of the pathogen. Here we provide mechanistic insights into ubiquitin regulation of host-pathogen interactions and how it affects bacterial and viral pathogenesis and the organization and response of the host cell.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt, Germany
| |
Collapse
|
7
|
Yoon EJ, Choi Y, Kim TM, Choi EK, Kim YB, Park D. The Neuroprotective Effects of Exosomes Derived from TSG101-Overexpressing Human Neural Stem Cells in a Stroke Model. Int J Mol Sci 2022; 23:ijms23179532. [PMID: 36076942 PMCID: PMC9455780 DOI: 10.3390/ijms23179532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although tissue-type plasminogen activator was approved by the FDA for early reperfusion of occluded vessels, there is a need for an effective neuroprotective drug for stroke patients. In this study, we established tumor susceptibility gene (TSG)101-overexpressing human neural stem cells (F3.TSG) and investigated whether they showed enhanced secretion of exosomes and whether treatment with exosomes during reperfusion alleviated ischemia-reperfusion-mediated brain damage. F3.TSG cells secreted higher amounts of exosomes than the parental F3 cells. In N2A cells subjected to oxygen–glucose deprivation (OGD), treatment with exosomes or coculture with F3.TSG cells significantly attenuated lactate dehydrogenase release, the mRNA expression of proinflammatory factors, and the protein expression of DNA-damage-related proteins. In a middle cerebral artery occlusion (MCAO) rat model, treatment with exosomes, F3 cells, or F3.TSG cells after 2 h of occlusion followed by reperfusion reduced the infarction volume and suppressed inflammatory cytokines, DNA-damage-related proteins, and glial fibrillary acidic protein, and upregulated several neurotrophic factors. Thus, TSG101-overexpressing neural stem cells showed enhanced exosome secretion; exosome treatment protected against MCAO-induced brain damage via anti-inflammatory activities, DNA damage pathway inhibition, and growth/trophic factor induction. Therefore, exosomes and F3.TSG cells can affect neuroprotection and functional recovery in acute stroke patients.
Collapse
Affiliation(s)
- Eun-Jung Yoon
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
- Department of Counseling, Health, and Kinesiology, College of Education and Human Development, Texas A&M University-San Antonio, One University Way, San Antonio, TX 78224, USA
| | - Yunseo Choi
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Yun-Bae Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
- Correspondence: ; Tel.: +82-43-230-3652
| |
Collapse
|
8
|
Tsg101/ESCRT-I recruitment regulated by the dual binding modes of K63-linked diubiquitin. Structure 2022; 30:289-299.e6. [PMID: 35120596 PMCID: PMC10015442 DOI: 10.1016/j.str.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
Abstract
The ESCRT-I protein Tsg101 plays a critical role in viral budding and endocytic sorting. Although Tsg101 is known to recognize monoubiquitin (Ub1), here we show that it can also bind several diubiquitins (K48-Ub2, N-Ub2, and K63-Ub2), with a preference for K63-linked Ub2. The NMR structure of the Tsg101:K63-Ub2 complex showed that while the Ub1-binding site accommodates the distal domain of Ub2, the proximal domain alternatively binds two different sites, the vestigial active site and an N-terminal helix. Mutation of each site results in distinct phenotypes regarding the recruitment of Tsg101 partners. Mutation in the vestigial active site abrogates interaction between Tsg101 and the HIV-1 protein Gag but not Hrs, a cellular protein. Mutation at the N-terminal helix alters Gag but not Hrs-Tsg101 localization. Given the broad involvement of Tsg101 in diverse cellular functions, this discovery advances our understanding of how the ESCRT protein recognizes binding partners and sorts endocytic cargo.
Collapse
|
9
|
Novel Tsg101 Binding Partners Regulate Viral L Domain Trafficking. Viruses 2021; 13:v13061147. [PMID: 34203832 PMCID: PMC8232796 DOI: 10.3390/v13061147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Two decades ago, Tsg101, a component of the Endosomal Sorting Complexes Required for Transport (ESCRT) complex 1, was identified as a cellular factor recruited by the human immunodeficiency virus type 1 (HIV-1) to facilitate budding of viral particles assembled at the cell periphery. A highly conserved Pro-(Thr/Ser)-Ala-Pro [P(T/S)AP] motif in the HIV-1 structural polyprotein, Gag, engages a P(T/S)AP-binding pocket in the Tsg101 N-terminal domain. Since the same domain in Tsg101 that houses the pocket was found to bind mono-ubiquitin (Ub) non-covalently, Ub binding was speculated to enhance P(T/S)AP interaction. Within the past five years, we found that the Ub-binding site also accommodates di-Ub, with Lys63-linked di-Ub exhibiting the highest affinity. We also identified small molecules capable of disrupting Ub binding and inhibiting budding. The structural similarity of these molecules, prazoles, to nucleosides prompted testing for nucleic acid binding and led to identification of tRNA as a Tsg101 binding partner. Here, we discuss these recently identified interactions and their contribution to the viral assembly process. These new partners may provide additional insight into the control and function of Tsg101 as well as identify opportunities for anti-viral drug design.
Collapse
|