1
|
Jiacheng D, Jiayue C, Ying G, Shaohua W, Wenhui L, Xinyu H. Research progress and challenges of the PD-1/PD-L1 axis in gliomas. Cell Biosci 2024; 14:123. [PMID: 39334448 PMCID: PMC11437992 DOI: 10.1186/s13578-024-01305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) immunosuppressants provides new therapeutic directions for various advanced malignant cancers. At present, PD-1/PD-L1 immunosuppressants have made significant progress in clinical trials of some gliomas, but PD-1/PD-L1 inhibitors have not yet shown convincing clinical efficacy in gliomas. This article summarizes the research progress of the PD-1 /PD-L1 pathway in gliomas through the following three aspects. It mainly includes the complex expression levels and regulatory mechanisms of PD-1/PD-L1 in the glioma microenvironment, the immune infiltration in glioma immunosuppressive microenvironment, and research progress on the application of PD-1/PD-L1 immunosuppressants in clinical treatment trials for gliomas. This will help to understand the current treatment progress and future research directions better.
Collapse
Affiliation(s)
- Dong Jiacheng
- Department of Neurosurgery, Jilin Provincial Hospital, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China
| | - Cui Jiayue
- Department of Histology and Embryology, The School of Basic Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Guo Ying
- Department of Histology and Embryology, The School of Basic Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Wang Shaohua
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Liu Wenhui
- Department of Histology and Embryology, The School of Basic Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Hong Xinyu
- Department of Neurosurgery, Jilin Provincial Hospital, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China.
| |
Collapse
|
2
|
Phung AT, Shah JR, Dong T, Reid T, Larson C, Sanchez AB, Oronsky B, Trogler WC, Kummel AC, Aisagbonhi O, Blair SL. CAR expression in invasive breast carcinoma and its effect on adenovirus transduction efficiency. Breast Cancer Res 2024; 26:131. [PMID: 39256827 PMCID: PMC11389499 DOI: 10.1186/s13058-024-01880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Breast cancer is the second leading cause of death in women, with invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) as the two most common forms of invasive breast cancer. While estrogen receptor positive (ER+) IDC and ILC are treated similarly, the multifocality of ILC presents challenges in detection and treatment, worsening long-term clinical outcomes in patients. With increasing documentation of chemoresistance in ILC, additional treatment options are needed. Oncolytic adenoviral therapy may be a promising option, but cancer cells must express the coxsackievirus & adenovirus receptor (CAR) for adenoviral therapy to be effective. The present study aims to evaluate the extent to which CAR expression is observed in ILC in comparison to IDC, and how the levels of CAR expression correlate with adenovirus transduction efficiency. The effect of liposome encapsulation on transduction efficiency is also assessed. METHODS To characterize CAR expression in invasive breast carcinoma, 36 formalin-fixed paraffin-embedded (FFPE) human breast tumor samples were assayed by CAR immunohistochemistry (IHC). Localization of CAR in comparison to other junctional proteins was performed using a multiplex immunofluorescence panel consisting of CAR, p120-catenin, and E-cadherin. ILC and IDC primary tumors and cell lines were transduced with E1- and E3-deleted adenovirus type 5 inserted with a GFP transgene (Ad-GFP) and DOTAP liposome encapsulated Ad-GFP (DfAd-GFP) at various multiplicities of infection (MOIs). Transduction efficiency was measured using a fluorescence plate reader. CAR expression in the human primary breast carcinomas and cell lines was also evaluated by IHC. RESULTS We observed membranous CAR, p120-catenin and E-cadherin expression in IDC. In ILC, we observed cytoplasmic expression of CAR and p120-catenin, with absent E-cadherin. Adenovirus effectively transduced high-CAR IDC cell lines, at MOIs as low as 12.5. Ad-GFP showed similar transduction as DfAd-GFP in high-CAR IDC cell lines. Conversely, Ad-GFP transduction of ILC cell lines was observed only at MOIs of 50 and 100. Furthermore, Ad-GFP did not transduce CAR-negative IDC cell lines even at MOIs greater than 100. Liposome encapsulation (DfAd-GFP) improved transduction efficiency 4-fold in ILC and 17-fold in CAR-negative IDC cell lines. CONCLUSION The present study demonstrates that oncolytic adenoviral therapy is less effective in ILC than IDC due to differences in spatial CAR expression. Liposome-enhanced delivery may be beneficial for patients with ILC and tumors with low or negative CAR expression to improve adenoviral therapeutic effectiveness.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Adenoviridae/genetics
- Transduction, Genetic
- Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism
- Coxsackie and Adenovirus Receptor-Like Membrane Protein/genetics
- Cell Line, Tumor
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/therapy
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Cadherins/metabolism
- Cadherins/genetics
- Genetic Vectors/genetics
- Genetic Vectors/administration & dosage
- Liposomes
Collapse
Affiliation(s)
- Abraham T Phung
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92037, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jaimin R Shah
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92037, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92037, USA
| | - Tao Dong
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92037, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92037, USA
| | - Tony Reid
- EpicentRx, Inc, La Jolla, CA, 92037, USA
| | | | | | | | - William C Trogler
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92037, USA
| | - Andrew C Kummel
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92037, USA
| | - Omonigho Aisagbonhi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Sarah L Blair
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA.
- Department of Surgery, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Bhoopathi P, Mannangatti P, Pradhan AK, Kumar A, Maji S, Lang FF, Klibanov AL, Madan E, Cavenee WK, Keoprasert T, Sun D, Bjerkvig R, Thorsen F, Gogna R, Das SK, Emdad L, Fisher PB. Noninvasive therapy of brain cancer using a unique systemic delivery methodology with a cancer terminator virus. J Cell Physiol 2024; 239:e31302. [PMID: 38775127 DOI: 10.1002/jcp.31302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024]
Abstract
Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander L Klibanov
- Biomedical Engineering, Radiology and Medical Imaging, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Esha Madan
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of San Diego, La Jolla, California, USA
| | - Timothy Keoprasert
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Rolf Bjerkvig
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Frits Thorsen
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Rajan Gogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
4
|
Stergiopoulos GM, Concilio SC, Galanis E. An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas. Curr Treat Options Oncol 2024; 25:952-991. [PMID: 38896326 DOI: 10.1007/s11864-024-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
OPINION STATEMENT Malignant gliomas are common central nervous system tumors that pose a significant clinical challenge due to the lack of effective treatments. Glioblastoma (GBM), a grade 4 malignant glioma, is the most prevalent primary malignant brain tumor and is associated with poor prognosis. Current clinical trials are exploring various strategies to combat GBM, with oncolytic viruses (OVs) appearing particularly promising. In addition to ongoing and recently completed clinical trials, one OV (Teserpaturev, Delytact®) received provisional approval for GBM treatment in Japan. OVs are designed to selectively target and eliminate cancer cells while promoting changes in the tumor microenvironment that can trigger and support long-lasting anti-tumor immunity. OVs offer the potential to remodel the tumor microenvironment and reverse systemic immune exhaustion. Additionally, an increasing number of OVs are armed with immunomodulatory payloads or combined with immunotherapy approaches in an effort to promote anti-tumor responses in a tumor-targeted manner. Recently completed oncolytic virotherapy trials can guide the way for future treatment individualization through patient preselection, enhancing the likelihood of achieving the highest possible clinical success. These trials also offer valuable insight into the numerous challenges inherent in malignant glioma treatment, some of which OVs can help overcome.
Collapse
Affiliation(s)
| | | | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Aghajani M, Jalilzadeh N, Aghebati-Maleki A, Yari A, Tabnak P, Mardi A, Saeedi H, Aghebati-Maleki L, Baradaran B. Current approaches in glioblastoma multiforme immunotherapy. Clin Transl Oncol 2024; 26:1584-1612. [PMID: 38512448 DOI: 10.1007/s12094-024-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Peyman Tabnak
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Montes-Escobar K, de la Hoz-M J, Castillo-Cordova P, Duran-Ospina JP, Bravo-Saltos RK, Lapo-Talledo GJ, Siteneski A. Glioblastoma: a comprehensive approach combining bibliometric analysis, Latent Dirichlet Allocation, and HJ-Biplot : Glioblastoma insights and trends: a 49-year bibliometric analysis. Neurosurg Rev 2024; 47:209. [PMID: 38724684 DOI: 10.1007/s10143-024-02440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/28/2024] [Accepted: 04/27/2024] [Indexed: 06/26/2024]
Abstract
Glioblastoma is a common and aggressive malignant central nervous system tumor in adults. This study aims to evaluate and analyze the scientific results, collaboration countries, main research topics, and topics over time reported about glioblastoma. A bibliometric analysis of glioblastoma publications was performed mainly using R and Multbiplot software for author, journal, and resume. Associated statistic methods Latent Dirichlet Allocation (LDA) and HJ-Biplot. Inclusion criteria were research articles from the PubMed database published in English between 1973 and December 2022. A total of 64,823 documents with an annual growth rate of 8.27% indicates a consistent increase in research output over time. The results for the number of citations and significant publications showed Cancer Res, J Neuro-Oncol, and Neuro-Oncology are the most influential journals in the field of glioblastoma. The countries that concentrated research were the tumor United States, China, Germany, and Italy. Finally, there has been a marked growth in studies on prognosis and patient survival, therapies, and treatments for glioblastoma. These findings reinforce the need for increased global resources to address glioblastoma, particularly in underdeveloped countries. Glioblastoma research's exponential growth reflects sustained interest in early diagnosis and patient survival.
Collapse
Affiliation(s)
- Karime Montes-Escobar
- Departamento de Matemáticas y Estadística, Faculta de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
- Statistics Department, University of Salamanca, Salamanca, 37007, Spain
| | - Javier de la Hoz-M
- Statistics Department, University of Salamanca, Salamanca, 37007, Spain
- Universidad del Magdalena, Santa Marta, 470004, Colombia
| | - Paul Castillo-Cordova
- SOLCA Nucleus Loja, Loja, 110105, Ecuador
- Carrera de Medicina, Facultad de Ciencias de la Salud,, Universidad Técnica Particular de Loja, Loja, 1101608 , Ecuador
| | | | - Rosalba Karen Bravo-Saltos
- Departamento de Matemáticas y Estadística, Faculta de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - German Josuet Lapo-Talledo
- School of Medicine, Faculty of Health Sciences, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Aline Siteneski
- School of Medicine, Faculty of Health Sciences, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
- Research Institute, Faculty of Health Sciences, Medicine Career, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
| |
Collapse
|
7
|
Solomou G, Young AMH, Bulstrode HJCJ. Microglia and macrophages in glioblastoma: landscapes and treatment directions. Mol Oncol 2024. [PMID: 38712663 DOI: 10.1002/1878-0261.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Glioblastoma is the most common primary malignant tumour of the central nervous system and remains uniformly and rapidly fatal. The tumour-associated macrophage (TAM) compartment comprises brain-resident microglia and bone marrow-derived macrophages (BMDMs) recruited from the periphery. Immune-suppressive and tumour-supportive TAM cell states predominate in glioblastoma, and immunotherapies, which have achieved striking success in other solid tumours have consistently failed to improve survival in this 'immune-cold' niche context. Hypoxic and necrotic regions in the tumour core are found to enrich, especially in anti-inflammatory and immune-suppressive TAM cell states. Microglia predominate at the invasive tumour margin and express pro-inflammatory and interferon TAM cell signatures. Depletion of TAMs, or repolarisation towards a pro-inflammatory state, are appealing therapeutic strategies and will depend on effective understanding and classification of TAM cell ontogeny and state based on new single-cell and spatial multi-omic in situ profiling. Here, we explore the application of these datasets to expand and refine TAM characterisation, to inform improved modelling approaches, and ultimately underpin the effective manipulation of function.
Collapse
Affiliation(s)
- Georgios Solomou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Adam M H Young
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Harry J C J Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
8
|
Hamade YJ, Dharnipragada R, Chen CC. The ClearPoint Array Frame: An MRI Compatible System that Supports Non-craniotomy, Multi-trajectory (NCMT) Stereotactic Procedures. World Neurosurg 2024; 184:e754-e764. [PMID: 38350598 DOI: 10.1016/j.wneu.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND With continued evolution in stereotactic techniques and an expanding armamentarium of surgical therapeutic options, non-craniotomy stereotactic procedures in neuro-oncology are becoming increasingly complex, often requiring multi-trajectory approaches. Here we demonstrate that the ClearPoint SmartFrame Array (Solana Beach, California, USA), a second-generation magnetic resonance imaging-compatible stereotactic frame, supports such non-craniotomy, multi-trajectory (NCMT) stereotactic procedures. METHODS We previously published case reports demonstrating the feasibility of NCMT through the ClearPoint SmartFrame Array. Here we prospectively followed the next 10 consecutive patients who underwent such multi-trajectory procedures to further establish procedural safety and clinical utility. RESULTS Ten patients underwent complex, multi-trajectory stereotactic procedures, including combinations of needle biopsy ± cyst drainage and laser interstitial thermal therapy targeting geographically distinct regions of neoplastic lesions under the same anesthetic event. The median maximal radial error of stereotaxis was 1.0 mm. In all cases, definitive diagnosis was achieved, and >90% of the intended targets were ablated. The average stereotaxis time for the multi-trajectory procedure was 119 ± 22.2 minutes, comparing favorably to our previously published results of single-trajectory procedures (80 ± 9.59 minutes, P = 0.125). There were no procedural complications. Post-procedure, the neurologic condition of 1 patient improved, while the remaining 9 patients remained stable. All patients were discharged home, with a median hospital stay of 1 day (range: 1-12 days). With a median follow-up of 376 days (range: 155-1438 days), there were no 30-day readmissions or wound complications. CONCLUSIONS Geographically distinct regions of brain cancer can be safely and accurately accessed through the ClearPoint Array frame in NCMT stereotactic procedures.
Collapse
Affiliation(s)
- Youssef J Hamade
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, Warren Alpert School of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
9
|
Wang W, Ou Z, Huang X, Wang J, Li Q, Wen M, Zheng L. Microbiota and glioma: a new perspective from association to clinical translation. Gut Microbes 2024; 16:2394166. [PMID: 39185670 DOI: 10.1080/19490976.2024.2394166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas pose a significant challenge in oncology due to their malignant nature, aggressive growth, frequent recurrence, and complications posed by the blood-brain barrier. Emerging research has revealed the critical role of gut microbiota in influencing health and disease, indicating its possible impact on glioma pathogenesis and treatment responsiveness. This review focused on existing evidence and hypotheses on the relationship between microbiota and glioma from progression to invasion. By discussing possible mechanisms through which microbiota may affect glioma biology, this paper offers new avenues for targeted therapies and precision medicine in oncology.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixin Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbei Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minghui Wen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
11
|
Hao Z, Yin X, Ding R, Chen L, Hao C, Duan H. A novel oncolytic virus-based biomarker participates in prognosis and tumor immune infiltration of glioma. Front Microbiol 2023; 14:1249289. [PMID: 37808305 PMCID: PMC10556503 DOI: 10.3389/fmicb.2023.1249289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Background Glioma is the most common central nervous malignancy. Due to its poor survival outcomes, it is essential to identify novel individualized therapy. Oncolytic virus (OV) treatment is a key therapy regulating tumor microenvironment in malignant glioma. Herein, we aim to identify the key genes after OV infection and its role in glioma. Methods Performing an RNA-seq analysis, the differentially expressed genes (DEGs) between EV-A71-infection and mock group were screened with GFold values. DAVID online analysis was performed to identify the functional classification. Overall survival (OS) or disease-free survival (DFS) was evaluated to analyze the relation between PTBP1 expression levels and prognosis of glioma patients. Additionally, the ssGSEA and TIMER algorithms were applied for evaluating immune cell infiltration in glioma. Results Following EV-A71 infection in glioma cells, PTBP1, one of the downregulated DEGs, was found to be associated with multiple categories of GO and KEGG enrichment analysis. We observed elevated expression levels of PTBP1 across various tumor grades of glioma in comparison to normal brain samples. High PTBP1 expression had a notable impact on the OS of patients with low-grade glioma (LGG). Furthermore, we observed an obvious association between PTBP1 levels and immune cell infiltration in LGG. Notably, PTBP1 was regarded as an essential prognostic biomarker in immune cells of LGG. Conclusion Our research uncovered a critical role of PTBP1 in outcomes and immune cell infiltration of glioma patients, particularly in those with LGG.
Collapse
Affiliation(s)
- Zheng Hao
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Ding
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Duan S, Wang S, Qiao L, Yu X, Wang N, Chen L, Zhang X, Zhao X, Liu H, Wang T, Wu Y, Li N, Liu F. Oncolytic Virus-Driven Biotherapies from Bench to Bedside. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206948. [PMID: 36879416 DOI: 10.1002/smll.202206948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/17/2023] [Indexed: 06/08/2023]
Abstract
With advances in cancer biology and an ever-deepening understanding of molecular virology, oncolytic virus (OV)-driven therapies have developed rapidly and become a promising alternative to traditional cancer therapies. In recent years, satisfactory results for oncolytic virus therapy (OVT) are achieved at both the cellular and organismal levels, and efforts are being increasingly directed toward clinical trials. Unfortunately, OVT remains ineffective in these trials, especially when performed using only a single OV reagent. In contrast, integrated approaches, such as using immunotherapy, chemotherapy, or radiotherapy, alongside OVT have demonstrated considerable efficacy. The challenges of OVT in clinical efficacy include the restricted scope of intratumoral injections and poor targeting of intravenous administration. Further optimization of OVT delivery is needed before OVs become a viable therapy for tumor treatment. In this review, the development process and antitumor mechanisms of OVs are introduced. The advances in OVT delivery routes to provide perspectives and directions for the improvement of OVT delivery are highlighted. This review also discusses the advantages and limitations of OVT monotherapy and combination therapy through the lens of recent clinical trials and aims to chart a course toward safer and more effective OVT strategies.
Collapse
Affiliation(s)
- Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Qiao
- Colorectal and Henia Minimally Invasive Surgery Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xu Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Wu
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Department of General Practice, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
13
|
Intraventricular immunovirotherapy; a translational step forward. Oncotarget 2023; 14:40-43. [PMID: 36634220 PMCID: PMC9836381 DOI: 10.18632/oncotarget.28343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oncolytic virotherapy with intratumoral engineered type-1 herpes simplex virus (HSV) has been proven safe with promising efficacy in recent clinical trials for treatment of both pediatric and adult high-grade glioma. However, this approach excludes patients with tumors in surgically inaccessible and/or eloquent brain regions. Current delivery methods are also unable to access/treat those patients with metastatic disease in the spinal cord and/or leptomeningeal disease. A recent preclinical study has paved the way for clinical translation of intraventricular administration of oHSV by identifying and mitigating the toxicity associated with this route for therapeutic benefit in murine models of disseminated medulloblastoma. This work may ultimately allow for targeting of intractable disease and provides a feasible option for the repetitive dosing of clinically relevant immunovirotherapy, G207.
Collapse
|
14
|
Mantica M, Drappatz J. Immunotherapy associated central nervous system complications in primary brain tumors. Front Oncol 2023; 13:1124198. [PMID: 36874119 PMCID: PMC9981156 DOI: 10.3389/fonc.2023.1124198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Advances clarifying the genetics and function of the immune system within the central nervous system (CNS) and brain tumor microenvironment have led to increasing momentum and number of clinical trials using immunotherapy for primary brain tumors. While neurological complications of immunotherapy in extra-cranial malignancies is well described, the CNS toxicities of immunotherapy in patients with primary brain tumors with their own unique physiology and challenges are burgeoning. This review highlights the emerging and unique CNS complications associated with immunotherapy including checkpoint inhibitors, oncolytic viruses, adoptive cell transfer/chimeric antigen receptor (CAR) T cell and vaccines for primary brain tumors, as well as reviews modalities that have been currently employed or are undergoing investigation for treatment of such toxicities.
Collapse
Affiliation(s)
- Megan Mantica
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jan Drappatz
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
15
|
Fatima M, Amraiz D, Navid MT. Oncolytic Virotherapy. Cancer Treat Res 2023; 185:105-126. [PMID: 37306907 DOI: 10.1007/978-3-031-27156-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oncolytic virotherapy opens up avenues for cancer treatment by selectively targeting the cancer cells and destructs them either through direct lysis or by inducing an immune response in the tumor microenvironment. This platform technology utilizes a diverse range naturally existing or genetically modified oncolytic viruses for their immunotherapeutic potential. Due to the limitations associated with the conventional cancer therapies, immunotherapies using oncolytic viruses (OVs) have generated a great deal of interest in the modern era. Currently, several oncolytic viruses have entered clinical trials and have proven successful for a number of different cancers as monotherapies as well as in combination with the standard treatment methods like chemotherapy, radiotherapy, or immunotherapy. Efficacy of OVs can be further enhanced by utilizing several approaches. Efforts of the scientific community for getting better knowledge of individual patient tumor immune responses will enable medical community to treat cancer patients more precisely. In this regard, OV seems to be a part of multimodality cancer treatment option in the near future. In this chapter, the fundamental characteristics and mechanism of actions of oncolytic viruses are initially described and then overview of the important clinical trials of various oncolytic viruses for a number of cancers is presented.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Deeba Amraiz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Muhammad Tariq Navid
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
16
|
El Atat O, Naser R, Abdelkhalek M, Habib RA, El Sibai M. Molecular targeted therapy: A new avenue in glioblastoma treatment. Oncol Lett 2022; 25:46. [PMID: 36644133 PMCID: PMC9811647 DOI: 10.3892/ol.2022.13632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, also referred to as glioblastoma multiforme (GBM), is grade IV astrocytoma characterized by being fast-growing and the most aggressive brain tumor. In adults, it is the most prevalent type of malignant brain tumor. Despite the advancements in both diagnosis tools and therapeutic treatments, GBM is still associated with poor survival rate without any statistically significant improvement in the past three decades. Patient's genome signature is one of the key factors causing the development of this tumor, in addition to previous radiation exposure and other environmental factors. Researchers have identified genomic and subsequent molecular alterations affecting core pathways that trigger the malignant phenotype of this tumor. Targeting intrinsically altered molecules and pathways is seen as a novel avenue in GBM treatment. The present review shed light on signaling pathways and intrinsically altered molecules implicated in GBM development. It discussed the main challenges impeding successful GBM treatment, such as the blood brain barrier and tumor microenvironment (TME), the plasticity and heterogeneity of both GBM and TME and the glioblastoma stem cells. The present review also presented current advancements in GBM molecular targeted therapy in clinical trials. Profound and comprehensive understanding of molecular participants opens doors for innovative, more targeted and personalized GBM therapeutic modalities.
Collapse
Affiliation(s)
- Oula El Atat
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Rayan Naser
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Maya Abdelkhalek
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon,Correspondence to: Professor Mirvat El Sibai, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Koraytem Street, Beirut 1102 2801, Lebanon, E-mail:
| |
Collapse
|
17
|
Investigational Microbiological Therapy for Glioma. Cancers (Basel) 2022; 14:cancers14235977. [PMID: 36497459 PMCID: PMC9736089 DOI: 10.3390/cancers14235977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Glioma is the most common primary malignancy of the central nervous system (CNS), and 50% of patients present with glioblastoma (GBM), which is the most aggressive type. Currently, the most popular therapies are progressive chemotherapy and treatment with temozolomide (TMZ), but the median survival of glioma patients is still low as a result of the emergence of drug resistance, so we urgently need to find new therapies. A growing number of studies have shown that the diversity, bioactivity, and manipulability of microorganisms make microbial therapy a promising approach for cancer treatment. However, the many studies on the research progress of microorganisms and their derivatives in the development and treatment of glioma are scattered, and nobody has yet provided a comprehensive summary of them. Therefore, in this paper, we review the research progress of microorganisms and their derivatives in the development and treatment of glioma and conclude that it is possible to treat glioma by exogenous microbial therapies and targeting the gut-brain axis. In this article, we discuss the prospects and pressing issues relating to these therapies with the aim of providing new ideas for the treatment of glioma.
Collapse
|
18
|
Vorobyev PO, Kochetkov DV, Chumakov PM, Zakirova NF, Zotova-Nefedorova SI, Vasilenko KV, Alekseeva ON, Kochetkov SN, Bartosch B, Lipatova AV, Ivanov AV. 2-Deoxyglucose, an Inhibitor of Glycolysis, Enhances the Oncolytic Effect of Coxsackievirus. Cancers (Basel) 2022; 14:5611. [PMID: 36428704 PMCID: PMC9688421 DOI: 10.3390/cancers14225611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common types of brain tumor. Despite intensive research, patients with GBM have a poor prognosis due to a very high rate of relapse and significant side effects of the treatment, with a median survival of 14.6 months. Oncolytic viruses are considered a promising strategy to eliminate GBM and other types of cancer, and several viruses have already been introduced into clinical practice. However, identification of the factors that underly the sensitivity of tumor species to oncolytic viruses or that modulate their clinical efficacy remains an important target. Here, we show that Coxsackievirus B5 (CVB5) demonstrates high oncolytic potential towards GBM primary cell species and cell lines. Moreover, 2-deoxyglucose (2DG), an inhibitor of glycolysis, potentiates the cytopathic effects of CVB5 in most of the cancer cell lines tested. The cells in which the inhibition of glycolysis enhanced oncolysis are characterized by high mitochondrial respiratory activity and glycolytic capacity, as determined by Seahorse analysis. Thus, 2-deoxyglucose and other analogs should be considered as adjuvants for oncolytic therapy of glioblastoma multiforme.
Collapse
Affiliation(s)
- Pavel O. Vorobyev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V. Kochetkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia F. Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sofia I. Zotova-Nefedorova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Konstantin V. Vasilenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of General Medicine, Pirogov Russian National Medical University, 117997 Moscow, Russia
| | - Olga N. Alekseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey N. Kochetkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69003 Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), 69001 Lyon, France
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
19
|
Zhou C, Chen Q, Chen Y, Qin CF. Oncolytic Zika Virus: New Option for Glioblastoma Treatment. DNA Cell Biol 2022. [DOI: 10.1089/dna.2022.0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yun Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
20
|
Transcriptome Analysis of Human Glioblastoma Cells Susceptible to Infection with the Leningrad-16 Vaccine Strain of Measles Virus. Viruses 2022; 14:v14112433. [PMID: 36366531 PMCID: PMC9696624 DOI: 10.3390/v14112433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) accounts for almost half of all primary malignant brain tumors in adults and has a poor prognosis. Here we demonstrated the oncolytic potential of the L-16 vaccine strain of measles virus (MV) against primary human GBM cells and characterized the genetic patterns that determine the sensitivity of primary human GBM cells to oncolytic therapy. MV replicated in all GBM cells, and seven out of eight cell lines underwent complete or partial oncolysis. RNA-Seq analysis identified about 1200 differentially expressed genes (FDR < 0.05) with at least two-fold expression level change between MV-infected and uninfected cells. Among them, the most significant upregulation was observed for interferon response, apoptosis and cytokine signaling. One out of eight GBM cell lines was defective in type I interferon production and, thus, in the post-interferon response, other cells lacked expression of different cellular defense factors. Thus, none of the cell lines displayed induction of the total gene set necessary for effective inhibition of MV replication. In the resistant cells, we detected aberrant expression of metalloproteinase genes, particularly MMP3. Thus, such genes could be considered intriguing candidates for further study of factors responsible for cell sensitivity and resistance to L-16 MV infection.
Collapse
|
21
|
Cheng K, Zhang H, Guo Q, Zhai P, Zhou Y, Yang W, Wang Y, Lu Y, Shen Z, Wu H. Emerging trends and research foci of oncolytic virotherapy for central nervous system tumors: A bibliometric study. Front Immunol 2022; 13:975695. [PMID: 36148235 PMCID: PMC9486718 DOI: 10.3389/fimmu.2022.975695] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022] Open
Abstract
BackgroundCentral nervous system tumor (CNST) is one of the most complicated and lethal forms of human tumors with very limited treatment options. In recent years, growing evidence indicates that oncolytic virotherapy (OVT) has emerged as a promising therapeutic strategy for CNSTs. And a considerable amount of literature on OVT-CNSTs has been published. However, there are still no studies summarizing the global research trends and hotspots of this field through a bibliometric approach. To fulfill this knowledge gap, bibliometric analysis was conducted based on all publications relating to OVT-CNSTs since 2000s.MethodsWe searched the Web of Science Core Collection for all relevant studies published between 2000 and 2022. Four different tools (online analysis platform, R-bibliometrix, CiteSpace and VOSviewer) were used to perform bibliometric analysis and network visualization, including annual publication output, active journals, contribution of countries, institutions, and authors, references, as well as keywords.ResultsA total of 473 articles and reviews were included. The annual number of publications on OVT-CNSTs showed a significant increasing trend. Molecular Therapy and Cancer Research were the most active and co-cited journals, respectively. In terms of contributions, there is no doubt that the United States occupied a leading position with the most publications (n=307, 64.9%) and the highest H-index (57). The institution and author that contributed the largest number of publications were Ohio State University and Chiocca EA, respectively. As can be seen from citation analysis, the current studies mainly focused on preclinical and phase I/II clinical results of various oncolytic virus for CNSTs treatment. Keywords co-occurrence and burst analysis revealed that the following research topics including immunotherapy, T-cells, tumor microenvironment, vaccine, blood-brain-barrier, checkpoint inhibitors, macrophage, stem cell, and recurrent glioblastoma have been research frontiers of this field and also have great potential to continue to be research hotspots in the future.ConclusionThere has been increasing attention on oncolytic viruses for use as CNSTs therapeutics. Oncolytic immunotherapy is a topic of great concern in this field. This bibliometric study provides a comprehensive analysis of the knowledge base, research hotspots, development perspective in the field of OVT-CNSTs, which could become an essential reference for scholars in this area.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Qiang Guo
- Department of Orhopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengfei Zhai
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of NeuroSpine Surgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Zhou
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Weiguang Yang
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yanqiu Lu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| | - Zefeng Shen
- Department of Graduate School, Sun Yat-sen University, Sun Yat-Sen Memorial Hospital, Guangzhou, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| | - Haiyang Wu
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| |
Collapse
|
22
|
Asija S, Chatterjee A, Yadav S, Chekuri G, Karulkar A, Jaiswal AK, Goda JS, Purwar R. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. Int Rev Immunol 2022; 41:582-605. [PMID: 35938932 DOI: 10.1080/08830185.2022.2101647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The aggressive and recurrent nature of glioblastoma is multifactorial and has been attributed to its biological heterogeneity, dysfunctional metabolic signaling pathways, rigid blood-brain barrier, inherent resistance to standard therapy due to the stemness property of the gliomas cells, immunosuppressive tumor microenvironment, hypoxia and neoangiogenesis which are very well orchestrated and create the tumor's own highly pro-tumorigenic milieu. Once the relay of events starts amongst these components, eventually it becomes difficult to control the cascade using only the balanced contemporary care of treatment consisting of maximal resection, radiotherapy and chemotherapy with temozolamide. Over the past few decades, implementation of contemporary treatment modalities has shown benefit to some extent, but no significant overall survival benefit is achieved. Therefore, there is an unmet need for advanced multifaceted combinatorial strategies. Recent advances in molecular biology, development of innovative therapeutics and novel delivery platforms over the years has resulted in a paradigm shift in gliomas therapeutics. Decades of research has led to emergence of several treatment molecules, including immunotherapies such as immune checkpoint blockade, oncolytic virotherapy, adoptive cell therapy, nanoparticles, CED and BNCT, each with the unique proficiency to overcome the mentioned challenges, present research. Recent years are seeing innovative combinatorial strategies to overcome the multifactorial resistance put forth by the GBM cell and its TME. This review discusses the contemporary and the investigational combinatorial strategies being employed to treat GBM and summarizes the evidence accumulated till date.
Collapse
Affiliation(s)
- Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sandhya Yadav
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Godhanjali Chekuri
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ankesh Kumar Jaiswal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| |
Collapse
|
23
|
Fekrirad Z, Barzegar Behrooz A, Ghaemi S, Khosrojerdi A, Zarepour A, Zarrabi A, Arefian E, Ghavami S. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers (Basel) 2022; 14:3698. [PMID: 35954362 PMCID: PMC9367505 DOI: 10.3390/cancers14153698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran 18735-136, Iran;
| | - Amir Barzegar Behrooz
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
| | - Arezou Khosrojerdi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
24
|
Li J, Zhang Y, Qu Z, Ding R, Yin X. ABCD3 is a prognostic biomarker for glioma and associated with immune infiltration: A study based on oncolysis of gliomas. Front Cell Infect Microbiol 2022; 12:956801. [PMID: 35959373 PMCID: PMC9358688 DOI: 10.3389/fcimb.2022.956801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Gliomas are the most lethal primary brain tumors and are still a major therapeutic challenge. Oncolytic virus therapy is a novel and effective means for glioma. However, little is known about gene expression changes during this process and their biological functions on glioma clinical characteristics and immunity. Methods The RNA-seq data after oncolytic virus EV-A71 infection on glioma cells were analyzed to screen significantly downregulated genes. Once ABCD3 was selected, The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Genotype-Tissue Expression (GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) data were used to analyze the relationship between ABCD3 expression and clinical characteristics in glioma. We also evaluated the influence of ABCD3 on the survival of glioma patients. CIBERSORT and Tumor Immune Estimation Resource (TIMER) were also used to investigate the correlation between ABCD3 and cancer immune infiltrates. Gene set enrichment analysis (GSEA) was performed to functionally annotate the potential functions or signaling pathways related to ABCD3 expression. Results ABCD3 was among the top 5 downregulated genes in glioma cells after oncolytic virus EV-A71 infection and was significantly enriched in several GO categories. Both the mRNA and protein expression levels of ABCD3 were upregulated in glioma samples and associated with the prognosis and grades of glioma patients. The Kaplan–Meier (K-M) curve analysis revealed that patients with high ABCD3 expression had shorter disease-specific survival (DSS) and overall survival (OS) than those with low ABCD3 expression. Moreover, ABCD3 expression could affect the immune infiltration levels and diverse immune marker sets in glioma. A positive correlation was found between ABCD3 and macrophages and active dendritic cells in the microenvironment of both the GBM and LGG. Gene sets including the plk1 pathway, tyrobp causal network, ir-damage and cellular response, and interleukin-10 signaling showed significant differential enrichment in the high ABCD3 expression phenotype. Conclusion Our results suggested that ABCD3 could be a potential biomarker for glioma prognosis and immunotherapy response and also further enriched the theoretical and molecular mechanisms of oncolytic virus treatment for malignant gliomas.
Collapse
Affiliation(s)
- Jinchuan Li
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhizhao Qu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Ding
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaofeng Yin, ;
| |
Collapse
|
25
|
Rodríguez-Camacho A, Flores-Vázquez JG, Moscardini-Martelli J, Torres-Ríos JA, Olmos-Guzmán A, Ortiz-Arce CS, Cid-Sánchez DR, Pérez SR, Macías-González MDS, Hernández-Sánchez LC, Heredia-Gutiérrez JC, Contreras-Palafox GA, Suárez-Campos JDJE, Celis-López MÁ, Gutiérrez-Aceves GA, Moreno-Jiménez S. Glioblastoma Treatment: State-of-the-Art and Future Perspectives. Int J Mol Sci 2022; 23:ijms23137207. [PMID: 35806212 PMCID: PMC9267036 DOI: 10.3390/ijms23137207] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Glioblastoma is the most frequent and lethal primary tumor of the central nervous system. Through many years, research has brought various advances in glioblastoma treatment. At this time, glioblastoma management is based on maximal safe surgical resection, radiotherapy, and chemotherapy with temozolomide. Recently, bevacizumab has been added to the treatment arsenal for the recurrent scenario. Nevertheless, patients with glioblastoma still have a poor prognosis. Therefore, many efforts are being made in different clinical research areas to find a new alternative to improve overall survival, free-progression survival, and life quality in glioblastoma patients. (2) Methods: Our objective is to recap the actual state-of-the-art in glioblastoma treatment, resume the actual research and future perspectives on immunotherapy, as well as the new synthetic molecules and natural compounds that represent potential future therapies at preclinical stages. (3) Conclusions: Despite the great efforts in therapeutic research, glioblastoma management has suffered minimal changes, and the prognosis remains poor. Combined therapeutic strategies and delivery methods, including immunotherapy, synthetic molecules, natural compounds, and glioblastoma stem cell inhibition, may potentiate the standard of care therapy and represent the next step in glioblastoma management research.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Camacho
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - José Guillermo Flores-Vázquez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
- Correspondence:
| | - Júlia Moscardini-Martelli
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Jorge Alejandro Torres-Ríos
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Alejandro Olmos-Guzmán
- Hospital de Especialidades No.1 Centro Médico Nacional del Bajío, León 37680, Mexico; (A.O.-G.); (C.S.O.-A.)
| | - Cindy Sharon Ortiz-Arce
- Hospital de Especialidades No.1 Centro Médico Nacional del Bajío, León 37680, Mexico; (A.O.-G.); (C.S.O.-A.)
| | - Dharely Raquel Cid-Sánchez
- Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (D.R.C.-S.); (S.R.P.)
| | - Samuel Rosales Pérez
- Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (D.R.C.-S.); (S.R.P.)
| | | | - Laura Crystell Hernández-Sánchez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Juan Carlos Heredia-Gutiérrez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Gabriel Alejandro Contreras-Palafox
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - José de Jesús Emilio Suárez-Campos
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Miguel Ángel Celis-López
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Guillermo Axayacalt Gutiérrez-Aceves
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Sergio Moreno-Jiménez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
- American British Cowdray Medical Center, Cancer Center, Mexico City 01120, Mexico
| |
Collapse
|
26
|
Bartak M, Chodkowski M, Słońska A, Grodzik M, Szczepaniak J, Bańbura MW, Cymerys J. Equid Alphaherpesvirus 1 Modulates Actin Cytoskeleton and Inhibits Migration of Glioblastoma Multiforme Cell Line A172. Pathogens 2022; 11:pathogens11040400. [PMID: 35456075 PMCID: PMC9031356 DOI: 10.3390/pathogens11040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/25/2023] Open
Abstract
Equid alphaherpesvirus 1 (EHV-1) causes respiratory diseases, abortion, and neurological disorders in horses. Recently, the oncolytic potential of this virus and its possible use in anticancer therapy has been reported, but its influence on cytoskeleton was not evaluated yet. In the following study, we have examined disruptions in actin cytoskeleton of glioblastoma multiforme in vitro model—A172 cell line, caused by EHV-1 infection. We used three EHV-1 strains: two non-neuropathogenic (Jan-E and Rac-H) and one neuropathogenic (EHV-1 26). Immunofluorescent labelling, confocal microscopy, real-time cell growth analysis and OrisTM cell migration assay revealed disturbed migration of A172 cells infected with the EHV-1, probably due to rearrangement of actin cytoskeleton and the absence of cell projections. All tested strains caused disruption of the actin network and general depolymerization of microfilaments. The qPCR results confirmed the effective replication of EHV-1. Thus, we have demonstrated, for the first time, that EHV-1 infection leads to inhibition of proliferation and migration in A172 cells, which might be promising for new immunotherapy treatment.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.C.); (A.S.); (M.W.B.); (J.C.)
- Correspondence:
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.C.); (A.S.); (M.W.B.); (J.C.)
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Anna Słońska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.C.); (A.S.); (M.W.B.); (J.C.)
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.G.); (J.S.)
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.G.); (J.S.)
| | - Marcin W. Bańbura
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.C.); (A.S.); (M.W.B.); (J.C.)
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.C.); (A.S.); (M.W.B.); (J.C.)
| |
Collapse
|
27
|
A Combined Ultrafiltration/Diafiltration Process for the Purification of Oncolytic Measles Virus. MEMBRANES 2022; 12:membranes12020105. [PMID: 35207027 PMCID: PMC8880582 DOI: 10.3390/membranes12020105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Measles virus (MV) is an important representative of a new class of cancer therapeutics known as oncolytic viruses. However, process intensification for the downstream purification of this fragile product is challenging. We previously found that a mid-range molecular weight cut-off (300 kDa) is optimal for the concentration of MV. Here, we tested continuous and discontinuous diafiltration for the purification of MV prepared in two different media to determine the influence of high and low protein loads. We found that a concentration step before diafiltration improved process economy and MV yield when using either serum-containing or serum-free medium. We also found that discontinuous diafiltration conferred a slight benefit in terms of the permeate flow, reflecting the repetitive dilution steps and the ability to break down parts of the fouling layer on the membrane. In summary, the combined ultrafiltration/diafiltration process is suitable for the purification of MV, resulting in the recovery of ~50% infectious virus particles with a total concentration factor of 8 when using 5 diavolumes of buffer.
Collapse
|
28
|
Zeng J, Li X, Sander M, Zhang H, Yan G, Lin Y. Oncolytic Viro-Immunotherapy: An Emerging Option in the Treatment of Gliomas. Front Immunol 2021; 12:721830. [PMID: 34675919 PMCID: PMC8524046 DOI: 10.3389/fimmu.2021.721830] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023] Open
Abstract
The prognosis of malignant gliomas remains poor, with median survival fewer than 20 months and a 5-year survival rate merely 5%. Their primary location in the central nervous system (CNS) and its immunosuppressive environment with little T cell infiltration has rendered cancer therapies mostly ineffective, and breakthrough therapies such as immune checkpoint inhibitors (ICIs) have shown limited benefit. However, tumor immunotherapy is developing rapidly and can help overcome these obstacles. But for now, malignant gliomas remain fatal with short survival and limited therapeutic options. Oncolytic virotherapy (OVT) is a unique antitumor immunotherapy wherein viruses selectively or preferentially kill tumor cells, replicate and spread through tumors while inducing antitumor immune responses. OVTs can also recondition the tumor microenvironment and improve the efficacy of other immunotherapies by escalating the infiltration of immune cells into tumors. Some OVTs can penetrate the blood-brain barrier (BBB) and possess tropism for the CNS, enabling intravenous delivery. Despite the therapeutic potential displayed by oncolytic viruses (OVs), optimizing OVT has proved challenging in clinical development, and marketing approvals for OVTs have been rare. In June 2021 however, as a genetically engineered OV based on herpes simplex virus-1 (G47Δ), teserpaturev got conditional and time-limited approval for the treatment of malignant gliomas in Japan. In this review, we summarize the current state of OVT, the synergistic effect of OVT in combination with other immunotherapies as well as the hurdles to successful clinical use. We also provide some suggestions to overcome the challenges in treating of gliomas.
Collapse
Affiliation(s)
- Jiayi Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangxue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Max Sander
- Department of International Cooperation, Guangzhou Virotech Pharmaceutical Co., Ltd., Guangzhou, China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Oncolytic Virotherapy for Melanoma Brain Metastases, a Potential New Treatment Paradigm? Brain Sci 2021; 11:brainsci11101260. [PMID: 34679325 PMCID: PMC8534242 DOI: 10.3390/brainsci11101260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Melanoma brain metastases remain a devastating disease process with poor prognosis. Recently, there has been a surge in studies demonstrating the efficacy of oncolytic virotherapy for brain tumor treatment. Given their specificity and amenability to genetic modification, the authors explore the possible role of oncolytic virotherapy as a potential treatment option for patients with melanoma brain metastases. METHODS A comprehensive literature review including both preclinical and clinical evidence of oncolytic virotherapy for the treatment of melanoma brain metastasis was performed. RESULTS Oncolytic virotherapy, specifically T-VEC (Imlygic™), was approved for the treatment of melanoma in 2015. Recent clinical trials demonstrate promising anti-tumor changes in patients who have received T-VEC; however, there is little evidence for its use in metastatic brain disease based on the existing literature. To date, only two single cases utilizing virotherapy in patients with metastatic brain melanoma have been reported, specifically in patients with treatment refractory disease. Currently, there is not sufficient data to support the use of T-VEC or other viruses for intracranial metastatic melanoma. In developing a virotherapy treatment paradigm for melanoma brain metastases, several factors must be considered, including route of administration, need to bypass the blood-brain barrier, viral tumor infectivity, and risk of adverse events. CONCLUSIONS Evidence for oncolytic virotherapy treatment of melanoma is limited primarily to T-VEC, with a noticeable paucity of data in the literature with respect to brain tumor metastasis. Given the promising findings of virotherapy for other brain tumor types, oncolytic virotherapy has great potential to offer benefits to patients afflicted with melanoma brain metastases and warrants further investigation.
Collapse
|