1
|
Chen YJ, Catto MA, Pandey S, Leal-Bertioli S, Abney M, Hunt BG, Bag S, Culbreath A, Srinivasan R. Characterization of gene expression patterns in response to an orthotospovirus infection between two diploid peanut species and their hybrid. FRONTIERS IN PLANT SCIENCE 2023; 14:1270531. [PMID: 38034554 PMCID: PMC10683084 DOI: 10.3389/fpls.2023.1270531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes significant yield loss in peanut (Arachis hypogaea L.) production. Use of peanut cultivars with moderate field resistance has been critical for TSWV management. However, current TSWV resistance is often not adequate, and the availability of sources of tetraploid resistance to TSWV is very limited. Allotetraploids derived by crossing wild diploid species could help introgress alleles that confer TSWV resistance into cultivated peanut. Thrips-mediated TSWV screening identified two diploids and their allotetraploid possessing the AA, BB, and AABB genomes Arachis stenosperma V10309, Arachis valida GK30011, and [A. stenosperma × A. valida]4x (ValSten1), respectively. These genotypes had reduced TSWV infection and accumulation in comparison with peanut of pure cultivated pedigree. Transcriptomes from TSWV-infected and non-infected samples from A. stenosperma, A. valida, and ValSten1 were assembled, and differentially expressed genes (DEGs) following TSWV infection were assessed. There were 3,196, 8,380, and 1,312 significant DEGs in A. stenosperma, A. valida, and ValSten1, respectively. A higher proportion of genes decreased in expression following TSWV infection for A. stenosperma and ValSten1, whereas a higher proportion of genes increased in expression following infection in A. valida. The number of DEGs previously annotated as defense-related in relation to abiotic and biotic stress was highest in A. valida followed by ValSten1 and A. stenosperma. Plant phytohormone and photosynthesis genes also were differentially expressed in greater numbers in A. valida followed by ValSten1 and A. stenosperma, with over half of those exhibiting decreases in expression.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Michael A. Catto
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Sudeep Pandey
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Soraya Leal-Bertioli
- Plant Pathology Department, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Mark Abney
- Entomology Department, University of Georgia, Tifton, GA, United States
| | - Brendan G. Hunt
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Sudeep Bag
- Plant Pathology Department, University of Georgia, Tifton, GA, United States
| | - Albert Culbreath
- Plant Pathology Department, University of Georgia, Tifton, GA, United States
| | | |
Collapse
|
2
|
Chen YJ, Pandey S, Catto M, Leal-Bertioli S, Abney MR, Bag S, Hopkins M, Culbreath A, Srinivasan R. Evaluation of Wild Peanut Species and Their Allotetraploids for Resistance against Thrips and Thrips-Transmitted Tomato Spotted Wilt Orthotospovirus (TSWV). Pathogens 2023; 12:1102. [PMID: 37764910 PMCID: PMC10536083 DOI: 10.3390/pathogens12091102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) causes spotted wilt disease in peanut (Arachis hypogaea L.) and limits yield. Breeding programs have been developing TSWV-resistant cultivars, but availability of sources of resistance against TSWV in cultivated germplasm is extremely limited. Diploid wild Arachis species can serve as important sources of resistance, and despite ploidy barriers (cultivated peanut is tetraploid), their usage in breeding programs is now possible because of the knowledge and development of induced interspecific allotetraploid hybrids. This study screened 10 wild diploid Arachis and six induced allotetraploid genotypes via thrips-mediated TSWV transmission assays and thrips' feeding assays in the greenhouse. Three parameters were evaluated: percent TSWV infection, virus accumulation, and temporal severity of thrips feeding injury. Results indicated that the diploid A. stenosperma accession V10309 and its derivative-induced allotetraploid ValSten1 had the lowest TSWV infection incidences among the evaluated genotypes. Allotetraploid BatDur1 had the lowest thrips-inflicted damage at each week post thrips release, while diploid A. batizocoi accession K9484 and A. duranensis accession V14167 had reduced feeding damage one week post thrips release, and diploids A. valida accession GK30011 and A. batizocoi had reduced feeding damage three weeks post thrips releasethan the others. Overall, plausible TSWV resistance in diploid species and their allotetraploid hybrids was characterized by reduced percent TSWV infection, virus accumulation, and feeding severity. Furthermore, a few diploids and tetraploid hybrids displayed antibiosis against thrips. These results document evidence for resistance against TSWV and thrips in wild diploid Arachis species and peanut-compatible-induced allotetraploids.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (Y.-J.C.); (S.P.)
| | - Sudeep Pandey
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (Y.-J.C.); (S.P.)
| | - Michael Catto
- Department of Entomology, University of Georgia, Athens, GA 30602, USA;
| | - Soraya Leal-Bertioli
- Department of Plant Pathology, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA;
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA;
| | - Mark R. Abney
- Department of Entomology, University of Georgia, Tifton, GA 31794, USA;
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.B.); (A.C.)
| | - Mark Hopkins
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA;
| | - Albert Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.B.); (A.C.)
| | | |
Collapse
|
3
|
Werghi S, Herrero FA, Fakhfakh H, Gorsane F. Auxin drives tomato spotted wilt virus (TSWV) resistance through epigenetic regulation of auxin response factor ARF8 expression in tomato. Gene 2021; 804:145905. [PMID: 34411646 DOI: 10.1016/j.gene.2021.145905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022]
Abstract
Tomato spotted wilt virus (TSWV) causes severe losses of tomato crops worldwide. To cope dynamically with such a threat, plants deploy strategies acting at the molecular and the epigenetic levels. We found that tomato symptoms progress in a specific-genotype-manner upon TSWV infection. Susceptible genotypes showed within the Auxin Response Factor (ARF8) promoter coupled to enhanced expression of miRNA167a, reduced ARF8 gene and decreased levels of the hormone auxin. This constitutes a deliberate attempt of TSWV to disrupt plant growth to promote spread in sensitive cultivars. Epigenetic regulation through the level of cytosine methylation and the miR167a-ARF8 module are part of a complex network modulating auxin-triggered synthesis and shaping tomato responses to TSWV. Furthermore, modulation of miR167a-ARF8 regulatory module could be applied in tomato-resistance breeding programs.
Collapse
Affiliation(s)
- Sirine Werghi
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Frederic Aparicio Herrero
- Institute of Molecular and Cellular Biology of Plants (UPV-CSIC), Valencia 46022, Spain; Dept of Biotechnology, ETSIAMN, Universidad Politécnica de Valencia, 46002, Spain
| | - Hatem Fakhfakh
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; Faculty of Sciences of Bizerte, Zarzouna 702, University of Carthage, Tunisia
| | - Faten Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; Faculty of Sciences of Bizerte, Zarzouna 702, University of Carthage, Tunisia.
| |
Collapse
|
4
|
Impact of Host Resistance to Tomato Spotted Wilt Orthotospovirus in Peanut Cultivars on Virus Population Genetics and Thrips Fitness. Pathogens 2021; 10:pathogens10111418. [PMID: 34832574 PMCID: PMC8625697 DOI: 10.3390/pathogens10111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) is a major constraint to peanut production in the southeastern United States. Peanut cultivars with resistance to TSWV have been widely used for over twenty years. Intensive usage of resistant cultivars has raised concerns about possible selection pressure against TSWV and a likelihood of resistance breakdown. Population genetics of TSWV isolates collected from cultivars with varying levels of TSWV resistance was investigated using five TSWV genes. Phylogenetic trees of genes did not indicate host resistance-based clustering of TSWV isolates. Genetic variation in TSWV isolates and neutrality tests suggested recent population expansion. Mutation and purifying selection seem to be the major forces driving TSWV evolution. Positive selection was found in N and RdRp genes but was not influenced by TSWV resistance. Population differentiation occurred between isolates collected from 1998 and 2010 and from 2016 to 2019 but not between isolates from susceptible and resistant cultivars. Evaluated TSWV-resistant cultivars differed, albeit not substantially, in their susceptibility to thrips. Thrips oviposition was reduced, and development was delayed in some cultivars. Overall, no evidence was found to support exertion of selection pressure on TSWV by host resistance in peanut cultivars, and some cultivars differentially affected thrips fitness than others.
Collapse
|