1
|
Ren Y, Dong W, Chen J, Xue H, Bu W. Identification and function of microRNAs in hemipteran pests: A review. INSECT SCIENCE 2024. [PMID: 39292965 DOI: 10.1111/1744-7917.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Hemiptera is one of the most significant orders of insect pests, including whiteflies, true bugs, aphids, planthoppers, psyllids, and so forth, which have led to substantial economic losses in agricultural industries and have significantly affected food yields through their ability to suck the phloem sap of crops and transmit numerous bacterial and viral pathogens. Therefore, explorations of pest-specific, eco-friendly and easy-to-adopt technologies for hemipteran pest control are urgently needed. To the best of our knowledge, microRNAs (miRNAs), which are endogenous non-coding small RNAs approximately 22 nucleotides in length, are involved in regulating gene expression via the direct recognition and binding of the 3'-untranslated region (3'-UTR) of target messenger RNAs (mRNAs) or by acting as a center of a competitive endogenous RNA (ceRNA) network at the post-transcriptional level. This review systematically outlines the characterization and functional investigation of the miRNA biogenesis pathway in hemipteran pests, such as whiteflies, true bugs, aphids and planthoppers. In addition, we explored the results of small RNA sequencing and functional observations of miRNAs in these pests, and the results suggest that the numerous miRNAs obtained and annotated via high-throughput sequencing technology and bioinformatic analyses contribute to molting development, fitness, wing polyphenism, symbiont interactions and insecticide resistance in hemipteran pests. Finally, we summarize current advances and propose a framework for future research to extend the current data and address potential limitations in the investigation and application of hemipteran miRNAs.
Collapse
Affiliation(s)
- Yipeng Ren
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhao Dong
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Juhong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Salman Hameed M, Ren Y, Tuda M, Basit A, Urooj N. Role of Argonaute proteins in RNAi pathway in Plutella xylostella: A review. Gene 2024; 903:148195. [PMID: 38295911 DOI: 10.1016/j.gene.2024.148195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Argonaute (Ago) proteins act as key elements in RNA interference (RNAi) pathway, orchestrating the intricate machinery of gene regulation within eukaryotic cells. Within the RNAi pathway, small RNA molecules, including microRNA (miRNA), small interfering RNA (siRNA), and PIWI-interacting RNA (piRNA), collaborate with Ago family member proteins such as Ago1, Ago2, and Ago3 to form the RNA-induced silencing complex (RISC). This RISC complex, in turn, either cleaves the target mRNA or inhibits the process of protein translation. The precise contributions of Ago proteins have been well-established in numerous animals and plants, although they still remain unclear in some insect species. This review aims to shed light on the specific roles played by Ago proteins within the RNAi mechanism in a destructive lepidopteran pest, the diamondback moth (Plutella xylostella). Furthermore, we explore the potential of double-stranded RNA (dsRNA)-mediated RNAi as a robust genetic tool in pest management strategies. Through an in-depth examination of Ago proteins and dsRNA-mediated RNAi, this review seeks to contribute to our understanding of innovative approaches for controlling this pest and potentially other insect species of agricultural significance.
Collapse
Affiliation(s)
- Muhammad Salman Hameed
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Yanliang Ren
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Midori Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Abdul Basit
- Institute of Entomology, Guizhou University Guiyang 550025, Guizhou China
| | - Nida Urooj
- Department of Business Administrative, Bahaudin Zakriya University, Multan, Pakistan
| |
Collapse
|
3
|
Zhao W, Li Q, Sun M, Xiao Y, Cui F. Interaction between endogenous microRNAs and virus-derived small RNAs controls viral replication in insect vectors. PLoS Pathog 2022; 18:e1010709. [PMID: 35797383 PMCID: PMC9295959 DOI: 10.1371/journal.ppat.1010709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/19/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in resisting virus infection in insects. Viruses are recognized by insect RNA interference systems, which generate virus-derived small RNAs (vsRNAs). To date, it is unclear whether viruses employ vsRNAs to regulate the expression of endogenous miRNAs. We previously found that miR-263a facilitated the proliferation of rice stripe virus (RSV) in the insect vector small brown planthopper. However, miR-263a was significantly downregulated by RSV. Here, we deciphered the regulatory mechanisms of RSV on miR-263a expression. The promoter region of miR-263a was characterized, and the transcription factor YY1 was found to negatively regulate the transcription of miR-263a. The nucleocapsid protein of RSV promoted the inhibitory effect of YY1 on miR-263a transcription by reducing the binding ability of RNA polymerase II to the promoter of miR-263a. Moreover, an RSV-derived small RNA, vsR-3397, downregulated miR-263a transcription by directly targeting the promoter region with partial sequence complementarity. The reduction in miR-263a suppressed RSV replication and was beneficial for maintaining a tolerable accumulation level of RSV in insect vectors. This dual regulation mechanism reflects an ingenious adaptation strategy of viruses to their insect vectors.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Mengqi Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Zhao Z, Lin S, Wu W, Zhang Z, Wu P, Shen M, Qian H, Guo X. A cypovirus encoded microRNA negatively regulates the NF-κB pathway to enhance viral multiplication in Silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104382. [PMID: 35245604 DOI: 10.1016/j.dci.2022.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as novel gene expression regulators at the post-transcriptional level. Not with standing that the biogenesis and function of miRNAs are well-understood in eukaryotes, little is known about RNA virus-encoded miRNAs. Bombyx mori cypovirus (BmCPV) is a double-stranded RNA virus with a segmented genome that causes cytoplasmic polyhedrosis disease in silkworm larvae. To date, the interaction between BmCPV and silkworm remains largely unclear. 22 candidate BmCPV-encoded miRNAs were identified in this study through small RNA sequencing, stem-loop RT-PCR and qRT-PCR. Then, generation and function analyses were conducted on one of the candidate miRNAs, BmCPV-miR-1, in the BmN cells and the silkworm larvae by RNA interference, quantitative PCR, dual-luciferase assay. Our results revealed that BmCPV-miR-1 was encoded by BmCPV genome RNA rather than the degraded fragments of the viral genome. Its generation depended on Dicer-1 and might also be correlated with Dicer-2, Argonaute-1 and Argonaute-2. Moreover, BmCPV-miR-1 could suppress the expression of the target gene, B. mori inhibitor of nuclear factor kappa-B kinase subunit beta (BmIKKβ), via binding to the target mRNA 3'-untranslated region, which fine-tuned the host NF-κB signaling pathway and consequently enhanced viral replication. Our results provide new evidence supporting the hypothesis that RNA viruses could generate miRNAs to modulate antiviral host defense.
Collapse
Affiliation(s)
- Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Heying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China.
| |
Collapse
|