1
|
Han X, Zhang L, Zhang M, Xin Q, Zhao Y, Wen Y, Deng H, Zhu J, Dai Q, Han M, Yang T, Lahu S, Jiang F, Chen Z. Amugulang virus, a novel hantavirus harboured by small rodents in Hulunbuir, China. Emerg Microbes Infect 2024; 13:2396893. [PMID: 39178299 PMCID: PMC11382690 DOI: 10.1080/22221751.2024.2396893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/25/2024]
Abstract
The Hulunbuir region, known for its diverse terrain and rich wildlife, is a hotspot for various natural epidemic diseases. Between 2021 and 2023, we collected 885 wild rodent samples from this area, representing three families, seven genera, and eleven species. Metagenomic analysis identified three complete nucleic acid sequences from the S, M, and L segments of the Hantaviridae family, which were closely related to the Khabarovsk virus. The nucleotide coding sequences for S, M, and L (1392 nt, 3465 nt, and 6491 nt, respectively) exhibited similarities of 82.34%, 81.68%, and 81.94% to known sequences, respectively, while protein-level analysis indicated higher similarities of 94.92%, 94.41%, and 95.87%, respectively. Phylogenetic analysis placed these sequences within the same clade as the Khabarovsk, Puumala, Muju, Hokkaido, Topografov, and Tatenalense viruses, all of which are known to cause febrile diseases in humans. Immunofluorescence detection of nucleic acid-positive rodent kidney samples using sera from patients with hemorrhagic fever and renal syndrome confirmed the presence of viral particles. Based on these findings, we propose that this virus represents a new member of the Hantaviridae family, tentatively named the Amugulang virus, after its primary distribution area.
Collapse
Affiliation(s)
- Xiaohu Han
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Lianhong Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Mingxuan Zhang
- Manzhouli International Travel Health Care Center, Manzhouli, Inner Mongolia, People's Republic of China
| | - Qing Xin
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Yongxiang Zhao
- The Sixth People's Hospital of Dandong City, Dandong, Liaoning, People's Republic of China
| | - Ya Wen
- The Sixth People's Hospital of Dandong City, Dandong, Liaoning, People's Republic of China
| | - Hua Deng
- Manzhouli International Travel Health Care Center, Manzhouli, Inner Mongolia, People's Republic of China
| | - Jinguo Zhu
- Manzhouli International Travel Health Care Center, Manzhouli, Inner Mongolia, People's Republic of China
| | - Qin Dai
- Manzhouli International Travel Health Care Center, Manzhouli, Inner Mongolia, People's Republic of China
| | - Mei Han
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Tianyu Yang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Saiji Lahu
- Tongliao Centers for Disease Control and Prevention, Tongliao, Inner Mongolia, People's Republic of China
| | - Feng Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| |
Collapse
|
2
|
Ling J, Lundeberg EE, Wasberg A, Faria IR, Vucicevic S, Settergren B, Lundkvist Å. Nephropathia Epidemica Caused by Puumala Virus in Bank Voles, Scania, Southern Sweden. Emerg Infect Dis 2024; 30:732-737. [PMID: 38526134 PMCID: PMC10977816 DOI: 10.3201/eid3004.231414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
In 2018, a local case of nephropathia epidemica was reported in Scania, southern Sweden, more than 500 km south of the previously known presence of human hantavirus infections in Sweden. Another case emerged in the same area in 2020. To investigate the zoonotic origin of those cases, we trapped rodents in Ballingslöv, Norra Sandby, and Sörby in southern Sweden during 2020‒2021. We found Puumala virus (PUUV) in lung tissues from 9 of 74 Myodes glareolus bank voles by screening tissues using a hantavirus pan-large segment reverse transcription PCR. Genetic analysis revealed that the PUUV strains were distinct from those found in northern Sweden and Denmark and belonged to the Finnish PUUV lineage. Our findings suggest an introduction of PUUV from Finland or Karelia, causing the human PUUV infections in Scania. This discovery emphasizes the need to understand the evolution, cross-species transmission, and disease outcomes of this newly found PUUV variant.
Collapse
|
3
|
Mustonen J, Henttonen H, Vaheri A. Hantavirus Infections among Military Forces. Mil Med 2024; 189:551-555. [PMID: 37428512 PMCID: PMC10898924 DOI: 10.1093/milmed/usad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
INTRODUCTION Hantaviruses cause two kinds of clinical syndromes. Hemorrhagic fever with renal syndrome is caused by Hantaan virus in Asia, Puumala virus (PUUV) and Dobrava virus in Europe, and Seoul virus worldwide. Hantavirus cardiopulmonary syndrome is caused by Sin Nombre virus in North America and Andes virus and related viruses in Latin America. All hantaviruses are carried by rodents and insectivores. Humans are infected via inhaled aerosols of rodent excreta. In the history, there are several epidemics of acute infectious diseases during many wars, which have been suggested or proven to be caused by various hantaviruses. MATERIALS AND METHODS Literature review of 41 original publications and reviews published between 1943 and 2022 was performed. Among them, 23 publications handle hantavirus infections among military forces, and the rest 17 hantavirus infections themselves. RESULTS A large epidemic during World War II in 1942 among German and Finnish soldiers in Northern Finland with more than 1,000 patients was most probably caused by PUUV. During Korean War in 1951-1954,∼ 3,200 cases occurred among United Nations soldiers in an epidemic caused by Hantaan virus. During Balkan war from 1991 to 1995, numerous soldiers got ill because of hantavirus infection caused by PUUV and Dobrava virus. Several other reports of cases of various hantavirus infections especially among U.S. soldiers acting in South Korea, Germany, Bosnia, and Kosovo have been described in the literature. CONCLUSIONS Military maneuvers usually include soil removal, spreading, digging with accompanied dust, and living in field and other harsh conditions, which easily expose soldiers to rodents and their excreta. Therefore, the risks of hantavirus infections in military context are obvious. All military infections have been caused by hantaviruses leading to hemorrhagic fever with renal syndrome.
Collapse
Affiliation(s)
- Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere 33520, Finland
| | - Heikki Henttonen
- Wildlife Ecology, Natural Resources Institute Finland, Helsinki 00790, Finland
| | - Antti Vaheri
- Department of Virology, Medicum,, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
4
|
Kikuchi F, Arai S, Hejduk J, Hayashi A, Markowski J, Markowski M, Rychlik L, Khodzinskyi V, Kamiya H, Mizutani T, Suzuki M, Sikorska B, Liberski PP, Yanagihara R. Phylogeny of Shrew- and Mole-Borne Hantaviruses in Poland and Ukraine. Viruses 2023; 15:881. [PMID: 37112861 PMCID: PMC10145205 DOI: 10.3390/v15040881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Earlier, we demonstrated the co-circulation of genetically distinct non-rodent-borne hantaviruses, including Boginia virus (BOGV) in the Eurasian water shrew (Neomys fodiens), Seewis virus (SWSV) in the Eurasian common shrew (Sorex araneus) and Nova virus (NVAV) in the European mole (Talpa europaea), in central Poland. To further investigate the phylogeny of hantaviruses harbored by soricid and talpid reservoir hosts, we analyzed RNAlater®-preserved lung tissues from 320 shrews and 26 moles, both captured during 1990-2017 across Poland, and 10 European moles from Ukraine for hantavirus RNA through RT-PCR and DNA sequencing. SWSV and Altai virus (ALTV) were detected in Sorex araneus and Sorex minutus in Boginia and the Białowieża Forest, respectively, and NVAV was detected in Talpa europaea in Huta Dłutowska, Poland, and in Lviv, Ukraine. Phylogenetic analyses using maximum-likelihood and Bayesian methods showed geography-specific lineages of SWSV in Poland and elsewhere in Eurasia and of NVAV in Poland and Ukraine. The ATLV strain in Sorex minutus from the Białowieża Forest on the Polish-Belarusian border was distantly related to the ATLV strain previously reported in Sorex minutus from Chmiel in southeastern Poland. Overall, the gene phylogenies found support long-standing host-specific adaptation.
Collapse
Affiliation(s)
- Fuka Kikuchi
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Center for Infectious Diseases Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Satoru Arai
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Janusz Hejduk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Ai Hayashi
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Janusz Markowski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Marcin Markowski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Vasyl Khodzinskyi
- Institute of Forestry and Park Gardening, Ukrainian National Forestry University, 79057 Lviv, Ukraine
| | - Hajime Kamiya
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Motoi Suzuki
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Łódź, 92-216 Łódź, Poland
| | - Paweł P. Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Łódź, 92-216 Łódź, Poland
| | - Richard Yanagihara
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|