1
|
Gopinath S, Hosamani M, Joseph BV, Patil SS. Development of classical swine fever virus E2-protein based indirect ELISA for detection of antibodies against the virus in pigs. Vet Res Commun 2024; 48:3121-3129. [PMID: 39088127 DOI: 10.1007/s11259-024-10482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Classical swine fever (CSF) is an economically important and highly contagious disease of pigs caused by CSF virus, genus Pestivirus. Serological diagnosis of the disease is highly valuable for surveillance and thereby containment of spread of the disease. In this study, we have demonstrated the development of CSFV envelope glycoprotein E2-based indirect ELISA (E2-iELISA) for the detection of CSFV specific antibodies. The full-length E2 protein was expressed in E. coli and the purified protein was used as a coating antigen in indirect ELISA for detecting CSFV specific antibodies in pigs. A panel of 506 pig sera samples was used to validate the ELISA and the results were highly comparable to the results obtained with the commercial antibody detection kit (PrioCHECK CSFV Ab kit). The in-house E2-iELISA demonstrated high diagnostic sensitivity (95.4%) and specificity (95.5%), highlighting its potential application for sero-surveillance or monitoring of the disease in the swine population.
Collapse
Affiliation(s)
| | - Madhusudan Hosamani
- ICAR- Indian Veterinary Research Institute, Bengaluru, 560024, Karnataka, India
| | | | - Sharanagouda S Patil
- ICAR- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
2
|
Song H, Abdullah SW, Pei C, Shi X, Chen X, Ma Y, Yin S, Sun S, Huang Y, Guo H. Self-Assembling E2-Based Nanoparticles Improve Vaccine Thermostability and Protective Immunity against CSFV. Int J Mol Sci 2024; 25:596. [PMID: 38203765 PMCID: PMC10778992 DOI: 10.3390/ijms25010596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Classical swine fever virus (CSFV) is a highly contagious pathogen causing significant economic losses in the swine industry. Conventional inactivated or attenuated live vaccines for classical swine fever (CSF) are effective but face biosafety concerns and cannot distinguish vaccinated animals from those infected with the field virus, complicating CSF eradication efforts. It is noteworthy that nanoparticle (NP)-based vaccines resemble natural viruses in size and antigen structure, and offer an alternative tool to circumvent these limitations. In this study, we developed an innovative vaccine delivery scaffold utilizing self-assembled mi3 NPs, which form stable structures carrying the CSFV E2 glycoprotein. The expressed yeast E2-fused protein (E2-mi3 NPs) exhibited robust thermostability (25 to 70 °C) and long-term storage stability at room temperature (25 °C). Interestingly, E2-mi3 NPs made with this technology elicited enhanced antigen uptake by RAW264.7 cells. In a rabbit model, the E2-mi3 NP vaccine against CSFV markedly increased CSFV-specific neutralizing antibody titers. Importantly, it conferred complete protection in rabbits challenged with the C-strain of CSFV. Furthermore, we also found that the E2-mi3 NP vaccines triggered stronger cellular (T-lymphocyte proliferation, CD8+ T-lymphocytes, IFN-γ, IL-2, and IL-12p70) and humoral (CSFV-specific neutralizing antibodies, CD4+ T-lymphocytes, and IL-4) immune responses in pigs than the E2 vaccines. To sum up, these structure-based, self-assembled mi3 NPs provide valuable insights for novel antiviral strategies against the constantly infectious agents.
Collapse
Affiliation(s)
- Hetao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Xiaoni Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Xiangyang Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Yuqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
3
|
Huang YL, Meyer D, Postel A, Tsai KJ, Liu HM, Yang CH, Huang YC, Chang HW, Deng MC, Wang FI, Becher P, Crooke H, Chang CY. Identification of neutralizing epitopes on the D/A domain of the E2 glycoprotein of classical swine fever virus. Virus Res 2023; 336:199209. [PMID: 37633596 PMCID: PMC10485151 DOI: 10.1016/j.virusres.2023.199209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Classical swine fever virus (CSFV) shares high antigenic homology with other members of the genus Pestivirus. Because several pestivirus species can also infect swine, eliciting cross-reactive antibodies, it is important to define CSFV-specific epitopes for the differential diagnosis of classical swine fever (CSF) by serology. For this purpose, epitope mapping of seven monoclonal antibodies (mAbs), recognizing sites on the D/A domain of glycoprotein E2, was performed using recombinant expressed antigenic domains and mutants of E2, as well as an overlapping peptide library. Three CSFV-specific epitopes, i.e., 780-IEEMGDDFGFGLCPF-794, 810-NGSAFYLVCPIGWTG-824, and 846-REKPF-850, were identified within the D/A domain of E2. Site-directed mutagenesis further confirmed that residues 783-MGD-785, 789-FGLCPF-794, 813-AFYLVCPIGWTG-824, and 846-REK-848 were critical residues in these regions. In addition, a F789S difference within the epitope 780-IEEMGDDFGFGLCPF-794 was responsible for the absence of binding of two mAbs to the E2 protein of the live attenuated CSFV vaccine strain Riems. Structural modeling revealed that, the three epitopes are located near each other, suggesting that they may form a more complex conformational epitope on the D/A domain in vivo. Six of the mAbs neutralized viruses of diverse genotypes, indicating that the target epitopes are involved in virus interaction with cells. The binding of CSFV to cells was significantly reduced after pre-incubation with either truncated E2 proteins comprising the D/A domain or with the CSFV-specific mAbs targeting the domain D/A. These epitopes identified on the D/A domain are important targets for virus neutralization that might be involved in the early steps of CSFV infection. These findings reveal potential candidates for improving the differential diagnosis of pestiviruses by serology.
Collapse
Affiliation(s)
- Yu-Liang Huang
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Denise Meyer
- WOAH Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Alexander Postel
- WOAH Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Kuo-Jung Tsai
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Hsin-Meng Liu
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Chia-Huei Yang
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Yu-Chun Huang
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ming-Chung Deng
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Paul Becher
- WOAH Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Helen Crooke
- WOAH Reference Laboratory for Classical Swine Fever, Animal and Plant Health Agency, New Haw, Surrey, KT15 3NB, UK.
| | - Chia-Yi Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
4
|
Chen JY, Wu CM, Chia MY, Huang C, Chien MS. A prospective CSFV-PCV2 bivalent vaccine effectively protects against classical swine fever virus and porcine circovirus type 2 dual challenge and prevents horizontal transmission. Vet Res 2023; 54:57. [PMID: 37434231 DOI: 10.1186/s13567-023-01181-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 07/13/2023] Open
Abstract
Classical swine fever virus (CSFV) infection leading to CSF outbreaks is among the most devastating swine diseases in the pig industry. Porcine circovirus type 2 (PCV2) infection, resulting in porcine circovirus-associated disease (PCVAD), is also a highly contagious disease affecting pig health worldwide. To prevent and control disease occurrence, multiple-vaccine immunization is necessary in contaminated areas or countries. In this study, a novel CSFV-PCV2 bivalent vaccine was constructed and demonstrated to be capable of eliciting humoral and cellular immune responses against CSFV and PCV2, respectively. Moreover, a CSFV-PCV2 dual-challenge trial was conducted on specific-pathogen-free (SPF) pigs to evaluate vaccine efficacy. All of the vaccinated pigs survived and showed no clinical signs of infection throughout the experimental period. In contrast, placebo-vaccinated pigs exhibited severe clinical signs of infection and steeply increased viremia levels of CSFV and PCV2 after virus challenge. Additionally, neither clinical signs nor viral detections were noted in the sentinel pigs when cohabitated with vaccinated-challenged pigs at three days post-inoculation of CSFV, indicating that the CSFV-PCV2 bivalent vaccine completely prevents horizontal transmission of CSFV. Furthermore, conventional pigs were utilized to evaluate the application of the CSFV-PCV2 bivalent vaccine in field farms. An adequate CSFV antibody response and a significant decrease in PCV2 viral load in the peripheral lymph nodes were observed in immunized conventional pigs, suggesting its potential for clinical application. Overall, this study demonstrated that the CSFV-PCV2 bivalent vaccine effectively elicited protective immune responses and the ability to prevent horizontal transmission, which could be a prospective strategy for controlling both CSF and PCVAD in commercial herds.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chi-Ming Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Chienjin Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Maw-Sheng Chien
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
5
|
Chang CY, Tsai KJ, Deng MC, Wang FI, Liu HM, Tsai SH, Tu YC, Lin NN, Huang YL. Transmission of Classical Swine Fever Virus in Cohabitating Piglets with Various Immune Statuses Following Attenuated Live Vaccine. Animals (Basel) 2023; 13:ani13030368. [PMID: 36766258 PMCID: PMC9913813 DOI: 10.3390/ani13030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Classical swine fever (CSF) is a systemic hemorrhagic disease affecting domestic pigs and wild boars. The modified live vaccine (MLV) induces quick and solid protection against CSF virus (CSFV) infection. Maternally derived antibodies (MDAs) via colostrum could interfere with the MLV's efficacy, leading to incomplete protection against CSFV infection for pigs. This study investigated CSFV transmission among experimental piglets with various post-MLV immune statuses. Nineteen piglets, 18 with MDAs and 1 specific-pathogen-free piglet infected with CSFV that served as the CSFV donor, were cohabited with piglets that had or had not been administered the MLV. Five-sixths of the piglets with MDAs that had been administered one dose of MLV were fully protected from contact transmission from the CSFV donor and did not transmit CSFV to the piglets secondarily exposed through cohabitation. Cell-mediated immunity, represented by the anti-CSFV-specific interferon-γ-secreting cells, was key to viral clearance and recovery. After cohabitation with a CSFV donor, the unvaccinated piglets with low MDA levels exhibited CSFV infection and spread CSFV to other piglets through contact; those with high MDA levels recovered but acted as asymptomatic carriers. In conclusion, MLV still induces solid immunity in commercial herds under MDA interference and blocks CSFV transmission within these herds.
Collapse
Affiliation(s)
- Chia-Yi Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Kuo-Jung Tsai
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
| | - Ming-Chung Deng
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsin-Meng Liu
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
| | - Shu-Hui Tsai
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
| | - Yang-Chang Tu
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
| | - Nien-Nong Lin
- Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Executive Yuan, 9F., No. 100, Sec. 2, Heping-West Road, Zhongzheng Dist., Taipei 10060, Taiwan
| | - Yu-Liang Huang
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
- Correspondence: ; Tel.: +886-2-2621-2111 (ext. 306)
| |
Collapse
|
6
|
Chen WT, Liu HM, Chang CY, Deng MC, Huang YL, Chang YC, Chang HW. Cross-reactivities and cross-neutralization of different envelope glycoproteins E2 antibodies against different genotypes of classical swine fever virus. Front Vet Sci 2023; 10:1169766. [PMID: 37180072 PMCID: PMC10172653 DOI: 10.3389/fvets.2023.1169766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Classical swine fever (CSF) is a highly contagious swine disease caused by the classical swine fever virus (CSFV), wreaking havoc on global swine production. The virus is divided into three genotypes, each comprising 4-7 sub-genotypes. The major envelope glycoprotein E2 of CSFV plays an essential role in cell attachment, eliciting immune responses, and vaccine development. In this study, to study the cross-reaction and cross-neutralizing activities of antibodies against different genotypes (G) of E2 glycoproteins, ectodomains of G1.1, G2.1, G2.1d, and G3.4 CSFV E2 glycoproteins from a mammalian cell expression system were generated. The cross-reactivities of a panel of immunofluorescence assay-characterized serum derived from pigs with/without a commercial live attenuated G1.1 vaccination against different genotypes of E2 glycoproteins were detected by ELISA. Our result showed that serum against the LPCV cross-reacted with all genotypes of E2 glycoproteins. To evaluate cross-neutralizing activities, hyperimmune serum from different CSFV E2 glycoprotein-immunized mice was also generated. The result showed that mice anti-E2 hyperimmune serum exhibited better neutralizing abilities against homologous CSFV than heterogeneous viruses. In conclusion, the results provide information on the cross-reactivity of antibodies against different genogroups of CSFV E2 glycoproteins and suggest the importance of developing multi-covalent subunit vaccines for the complete protection of CSF.
Collapse
Affiliation(s)
- Wei-Tao Chen
- School of Veterinary Medicine National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
| | - Hsin-Meng Liu
- School of Veterinary Medicine National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
- College of Bioresources and Agriculture, Animal Health Research Institute, Tamsui, Taiwan
| | - Chia-Yi Chang
- School of Veterinary Medicine National Taiwan University, Taipei, Taiwan
| | - Ming-Chung Deng
- College of Bioresources and Agriculture, Animal Health Research Institute, Tamsui, Taiwan
| | - Yu-Liang Huang
- College of Bioresources and Agriculture, Animal Health Research Institute, Tamsui, Taiwan
| | - Yen-Chen Chang
- School of Veterinary Medicine National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Hui-Wen Chang,
| |
Collapse
|
7
|
Host Cell Receptors Implicated in the Cellular Tropism of BVDV. Viruses 2022; 14:v14102302. [PMID: 36298858 PMCID: PMC9607657 DOI: 10.3390/v14102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most hazardous viruses, which causes huge economic losses in the cattle industry around the world. In recent years, there has been a continuous increase in the diversity of pestivirus worldwide. As a member of the genus Pestivirus in the Flaviviridae family, BVDV has a wide range of host animals including cattle, goat, sheep, pig, camel and other cloven-hoofed animals, and it has multi-tissue tropism as well. The recognition of their permissive cells by viruses via interaction with the cellular receptors is a prerequisite for successful infection. So far, little is known about the cellular receptors essential for BVDV entry and their detailed functions during BVDV infection. Thus, discovery of the cellular receptors involved in the entry of BVDV and other pestiviruses is significant for development of the novel intervention. The viral envelope glycoprotein Erns and E2 are crucial determinants of the cellular tropism of BVDV. The cellular proteins bound with Erns and E2 potentially participate in BVDV entry, and their abundance might determine the cellular tropism of BVDV. Here, we summarize current knowledge regarding the cellular molecules have been described for BVDV entry, such as, complement regulatory protein 46 (CD46), heparan sulfate (HS), the low-density lipoprotein (LDL) receptor, and a disintegrin and metalloproteinase 17 (ADAM17). Furthermore, we focus on their implications of the recently identified cellular receptors for pestiviruses in BVDV life cycle. This knowledge provides a theoretical basis for BVDV prevention and treatment by targeting the cellular receptors essential for BVDV infection.
Collapse
|
8
|
Muasya D, Van Leeuwen J, Gitau G, McKenna S, Heider L, Muraya J. Evaluation of antibody and antigen cross-reaction in Kenyan dairy cattle naturally infected with two pestiviruses: Bovine viral diarrhea virus and classical swine fever virus. Vet World 2022; 15:1290-1296. [PMID: 35765487 PMCID: PMC9210842 DOI: 10.14202/vetworld.2022.1290-1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bovine viral diarrhea virus (BVDV) and classical swine fever virus (CSFV) are important pathogens of cattle and pigs, respectively, and belong to the genus Pestivirus. As CSFV has been shown to infect cattle, it can create diagnostic challenges of BVDV results through possible cross-reactivity where cattle could be exposed to pigs and CSFV. This study aimed to determine the possible cross-reactivity of BVDV and CSFV enzyme-linked immunosorbent assay (ELISA) results for antigen (Ag) and antibody (Ab) among smallholder dairy cattle in Kenya. Materials and Methods: This was a cross-sectional study based on a single visit to farms to collect serum samples and other descriptive farm-level and animal-level information. Testing for BVDV Ag and Ab was conducted on serum samples from 320 dairy cows and heifers, with CSFV Ag and Ab testing conducted on a subset of 133 and 74 serum samples, respectively. CSFV testing was based on BVDV test results and the availability of enough sample volume from farms that kept pigs. The Ag and Ab tests utilized IDEXX ELISA for both BVDV and CSFV. Results: For the 74 samples with Ab tests for both viruses, 40 (54.0%) were BVDV Ab positive, while 63 (85.1%) were CSFV Ab positive. Of the 40 BVDV Ab positive samples, 36 cattle (90.0%) tested positive for CSFV Ab. However, of the 34 BVDV Ab negative samples, 27 (79.4%) were CSFV Ab test-positive. For the 133 samples with Ag tests for both viruses, 125 (94.0%) were BVDV Ag positive, while 2 (1.5%) samples were CSFV Ag positive. None of the eight BVDV Ag negative samples was positive for CSFV Ag and only two (1.6%) of the 125 BVDV Ag positive samples were positive for CSFV Ag. Conclusion: The results indicate either substantial cross-reactivity of the two Ab ELISA tests, or reactivity with some other protein in the samples that led to the positive Ab test results. There was only limited evidence for cross-reactivity of the two Ag ELISA tests. We recommend that Pestivirus genus cross-reactivity be considered when interpreting BVDV ELISA results in cattle, more for Ab than Ag tests. Further research is needed to clarify the levels of cross-reactivity between BVDV and other Pestivirus Ag and Ab tests from animals on mixed-species farms.
Collapse
Affiliation(s)
- Daniel Muasya
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada; Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - John Van Leeuwen
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada
| | - George Gitau
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Shawn McKenna
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada
| | - Luke Heider
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada
| | - Joan Muraya
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
9
|
A Triple Gene-Deleted Pseudorabies Virus-Vectored Subunit PCV2b and CSFV Vaccine Protects Pigs against PCV2b Challenge and Induces Serum Neutralizing Antibody Response against CSFV. Vaccines (Basel) 2022; 10:vaccines10020305. [PMID: 35214763 PMCID: PMC8878206 DOI: 10.3390/vaccines10020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is endemic worldwide. PCV2 causes immunosuppressive infection. Co-infection of pigs with other swine viruses, such as pseudorabies virus (PRV) and classical swine fever virus (CSFV), have fatal outcomes, causing the swine industry significant economic losses in many if not all pig-producing countries. Currently available inactivated/modified-live/vectored vaccines against PCV2/CSFV/PRV have safety and efficacy limitations. To address these shortcomings, we have constructed a triple gene (thymidine kinase, glycoprotein E [gE], and gG)-deleted (PRVtmv) vaccine vector expressing chimeric PCV2b-capsid, CSFV-E2, and chimeric Erns-fused with bovine granulocytic monocyte-colony stimulating factor (Erns-GM-CSF), designated as PRVtmv+, a trivalent vaccine. Here we compared this vaccine’s immunogenicity and protective efficacy in pigs against wild-type PCV2b challenge with that of the inactivated Zoetis Fostera Gold PCV commercial vaccine. The live PRVtmv+ prototype trivalent subunit vaccine is safe and highly attenuated in pigs. Based on PCV2b-specific neutralizing antibody titers, viremia, viral load in lymphoid tissues, fecal-virus shedding, and leukocyte/lymphocyte count, the PRVtmv+ yielded better protection for vaccinated pigs than the commercial vaccine after the PCV2b challenge. Additionally, the PRVtmv+ vaccinated pigs generated low to moderate levels of CSFV-specific neutralizing antibodies.
Collapse
|