1
|
Zhao J, Duan H, Chen X, Ren B, Zhu Q, Ji P, Chang Y, Sun Y, Zhao Q. A serologic marker attenuated live vaccine protects piglets against highly pathogenic porcine reproductive and respiratory syndrome virus infection. Vet Res 2025; 56:89. [PMID: 40275373 PMCID: PMC12023688 DOI: 10.1186/s13567-025-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Currently, there are no commercial serologic marker or differentiation of infected and vaccinated animal (DIVA) vaccines for the eradication of porcine reproductive and respiratory syndrome virus (PRRSV) infection from pig farms. In a previous study, a nanobody-based competitive ELISA (cELISA) was specifically developed to detect anti-genotype 2 PRRSV (PRRSV-2) antibodies. On the basis of the epitope recognized by the nanobody and the prevalence of PRRSV-2 infection in China, a DIVA vaccine candidate strain was designed and evaluated in the present study. First, an infectious cDNA clone based on the genomic sequence of the highly pathogenic PRRSV-2 (HP-PRRSV) isolate SX-HD was constructed and named rSX-HD. Using the infectious clone as the backbone, a chimeric infectious cDNA clone in which the gene encoding the nucleocapsid (N) protein was replaced with the gene encoding the genotype 1 PRRSV N protein was generated and named rSX-HD2M1. The chimeric PRRSV rSX-HD2M1 was subsequently rescued successfully in Marc-145 cells, which were then passaged for 120 generations for attenuation. A safety study indicated that rSX-HD2M1-F120 is not pathogenic to piglets. In vivo inoculation and challenge experiments suggested that rSX-HD2M1-F120 vaccination significantly reduced serum viral loads and lung tissue lesions and that vaccinated piglets did not show any clinical symptoms or histopathological changes. Furthermore, this recombinant marker virus, in conjunction with the previously developed nanobody-based cELISA, enables serological differentiation between marker virus-infected animals and those infected with wild-type PRRSV-2. These results suggest that rSX-HD2M1-F120 is a good candidate for providing a live attenuated DIVA vaccine against PRRSV-2 infection in piglets.
Collapse
Affiliation(s)
- Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Xu Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Binbin Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Qianyi Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Yueting Chang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China.
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China.
| |
Collapse
|
2
|
Geteneh A, Kiros M, Tamrat E, Tesfaye A, Gashaw Y, Biset S, Reta MA. Viral meningitis in Sub-Saharan Africa: trends in prevalence, etiologies, and diagnostic approaches. Virol J 2025; 22:100. [PMID: 40234954 PMCID: PMC12001642 DOI: 10.1186/s12985-025-02730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025] Open
Abstract
Viral meningitis is a significant yet often underreported public health concern in Sub-Saharan Africa (SSA), where diagnostic limitations and surveillance gaps hinder accurate case detection. This systematic review examines epidemiological trends, etiologies, and laboratory diagnostic approaches to viral meningitis across SSA from 1987 to 2024. This data reveal that the prevalence of viral meningitis has shown an overall increasing trend, with a considerable year-to-year variability influenced by seasonal outbreaks, improved diagnostic methods, and enhanced surveillance efforts. Human enteroviruses (HEVs) were the most frequently identified causative agents, accounting for 1,164 confirmed cases, followed by the herpesvirus family, including Epstein-Barr virus (EBV) and cytomegalovirus (CMV). Other detected viral pathogens include mumps virus, adenoviruses, coxsackievirus, and arboviruses such as dengue virus. The shift from traditional viral cultures to polymerase chain reaction (PCR) and multiplex PCR has significantly improved the case detection. Despite these advancements, substantial gaps remain in diagnostic accessibility, surveillance systems, and less research focus on viral meningitis in SSA. Addressing these challenges through improved surveillance, enhanced diagnostic capacity, and targeted public health strategies is crucial for mitigating the burden of viral meningitis in the region.
Collapse
Affiliation(s)
- Alene Geteneh
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia.
| | - Mulugeta Kiros
- Department of Medical Laboratory Science, College of Health Sciences, Raya University, Maichew, Ethiopia
| | - Ephrem Tamrat
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Aragaw Tesfaye
- Department of Internal Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Yalewayker Gashaw
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Sirak Biset
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Melese Abate Reta
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| |
Collapse
|
3
|
Zhang S, Gao H, Zhang G, Fang M, Kong Y, Jiang L, Liu Q, Wang P, Liu Y, Li Y. Metavirome analysis of domestic sheep in Shaanxi, Gansu, and Ningxia, China. Front Vet Sci 2024; 11:1508617. [PMID: 39691376 PMCID: PMC11649628 DOI: 10.3389/fvets.2024.1508617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Sheep play an important role in China's agricultural development, but they are also potential hosts for many viruses, some of which have been identified as zoonotic pathogens, which may pose a serious threat to social public health and animal husbandry. Therefore, clarifying the characteristics of viruses in sheep will provide an important basis for the study of pathogenic ecology and viral evolution of viruses carried by sheep. We collected nasal and anal swabs from 688 sheep in 22 counties in Shaanxi, Gansu, and Ningxia, China, between January 2022 and July 2023, and utilized next-generation sequencing technology and bioinformatics approaches to identify the viruses in the samples. A total of 38 virus families carried by sheep were identified, including 12 ssRNA (+) virus families, 2 dsRNA virus families, 8 ssDNA (+) virus families, and 18 dsDNA virus families. Among them, Astroviridae, Coronaviridae, Picornaviridae, and Tobaniviridae in RNA virus families and Herpesviridae, Adenoviridae, and Circoviridae in DNA virus families are all viruses that are frequently detected in most ruminants. Alpha and beta diversity results showed that there was no difference in the overall richness and diversity of RNA and DNA viruses among the three provinces (p > 0.05). The evolutionary analysis demonstrated a tight link between the viral members carried by sheep and other ruminant viruses, implying that these viruses may spread across different species of ruminants. This study established a library of RNA and DNA viruses carried by sheep in the Shaanxi-Gansu-Ningxia region, providing an overview of the viruses present in this population. The findings offer valuable data for further research on virus evolution and monitoring in sheep.
Collapse
Affiliation(s)
- Sinong Zhang
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Hui Gao
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Gang Zhang
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Min Fang
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Yunyi Kong
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Lingling Jiang
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Qiang Liu
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Pu Wang
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Yanling Liu
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | | |
Collapse
|
4
|
Soe Thu M, Sawaswong V, Chanchaem P, Klomkliew P, Campbell BJ, Hirankarn N, Fothergill JL, Payungporn S. Optimization of a DNA extraction protocol for improving bacterial and fungal classification based on Nanopore sequencing. Access Microbiol 2024; 6:000754.v3. [PMID: 39376590 PMCID: PMC11457918 DOI: 10.1099/acmi.0.000754.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/03/2024] [Indexed: 10/09/2024] Open
Abstract
Ribosomal RNA gene amplicon sequencing is commonly used to evaluate microbiome profiles in health and disease and document the impact of interventional treatments. Nanopore sequencing is attractive since it can provide greater classification at the species level. However, optimized protocols to target marker genes for bacterial and fungal profiling are needed. To achieve an increased taxonomic resolution, we developed extraction and full-length amplicon PCR-based approaches using Nanopore sequencing. Three lysis conditions were applied to a mock microbial community, including known bacterial and fungal species: ZymoBIOMICS lysis buffer (ML) alone, incorporating bead-beating (MLB) or bead-beating plus MetaPolyzyme enzymatic treatment (MLBE). In profiling of bacteria in comparison to reference data, MLB had more statistically different bacterial phyla and genera than the other two conditions. In fungal profiling, MLB had a significant increase of Ascomycota and a decline of Basidiomycota, subsequently failing to detect Malassezia and Cryptococcus. Also, a principal coordinates analysis plot by the Bray-Curtis metric showed a significant difference among groups for bacterial (P=0.033) and fungal (P=0.012) profiles, highlighting the importance of understanding the biases present in pretreatment. Overall, microbial profiling and diversity analysis revealed that ML and MLBE are more similar than MLB for both bacteria and fungi; therefore, using this specific pipeline, bead-beating is not recommended for whole gene amplicon sequencing. However, ML alone was suggested as an optimal approach considering DNA yield, taxonomic classification, reagent cost and hands-on time. This could be an initial proof-of-concept study for simultaneous human bacterial and fungal microbiome studies.
Collapse
Affiliation(s)
- May Soe Thu
- Joint Chulalongkorn University–University of Liverpool Doctoral Program in Biomedical Sciences and Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 3GE, UK
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Barry J. Campbell
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 3GE, UK
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Joanne L. Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 3GE, UK
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Li S, Huang J, Cai X, Mao L, Xie L, Wang F, Zhou H, Yuan X, Sun X, Fu X, Fan B, Xu X, Li J, Li B. Prevalence and Evolutionary Characteristics of Bovine Coronavirus in China. Vet Sci 2024; 11:230. [PMID: 38921977 PMCID: PMC11209178 DOI: 10.3390/vetsci11060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
Bovine coronavirus (BCoV), bovine rotavirus, bovine viral diarrhea virus, and bovine astrovirus are the most common intestinal pathogenic viruses causing diarrhea in cattle. We collected 1646 bovine fecal samples from January 2020 to August 2023. BCoV was the major pathogen detected, with a positive rate of 34.02% (560/1646). Of the 670 diarrheal samples and 976 asymptomatic samples, 209 and 351 were BCoV-positive, respectively. Studying the relevance of diarrhea associated with BCoV has shown that the onset of diarrheal symptoms post-infection is strongly correlated with the cattle's age and may also be related to the breed. We amplified and sequenced the hemagglutinin esterase (HE), spike protein, and whole genomes of the partially positive samples and obtained six complete HE sequences, seven complete spike sequences, and six whole genomes. Molecular characterization revealed that six strains were branched Chinese strains, Japanese strains, and partial American strains from the GⅡb subgroup. Strains HBSJZ2202 and JSYZ2209 had four amino acid insertions on HE. We also analyzed ORF1a and found disparities across various regions within GIIb, which were positioned on separate branches within the phylogenetic tree. This work provides data for further investigating the epidemiology of BCoV and for understanding and analyzing BCoV distribution and dynamics.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jin Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuhang Cai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Lingling Xie
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China; (L.X.); (F.W.)
| | - Fu Wang
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China; (L.X.); (F.W.)
| | - Hua Zhou
- Qianxi Animal Disease Control Center, Qianxi 551500, China;
| | - Xuesong Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinru Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Xincheng Fu
- Langfang Municipal Bureau of Agriculture and Rural Affairs, Langfang 065000, China;
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Li S, Wang C, Zeng H, Han Z. Effects of different combinations of antibacterial compound supplements in calf pellets on growth performance, health, blood parameters, and rumen microbiome of dairy calves. Front Vet Sci 2024; 11:1376758. [PMID: 38803795 PMCID: PMC11128685 DOI: 10.3389/fvets.2024.1376758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
This study investigated the effects of different combinations of antibacterial compounds (attapulgite, plant essential oils, and chitosan oligosaccharides) on growth performance, blood biochemical parameters, and rumen microbiome of calves. A total of 48 preweaning calves were randomly divided into four groups (n = 12 per group), and fed the following full mixed-ration granule diets for the 67-d-feeding trial: (1) basal diet (control group); (2) basal diet +1,000 g/t attapulgite, plant essential oils, and chitosan oligosaccharide (AEOCO group); (3) basal diet +1,000 g/t attapulgite and chitosan oligosaccharide (ACO group); and (4) basal diet +1,000 g/t attapulgite and plant essential oil (AEO group). The results showed that the daily weight gain of the AEOCO and AEO groups significantly increased (p < 0.05), whereas the feed conversion ratio decreased compared with that of the control group. Among the three treatment groups, AEO group showed the most positive effect, with the diarrhea rate reduced by 68.2% compared with that of the control group. Total protein and globulin levels were lower in the AEO group than in the control group. Albumin levels were higher in the AEOCO and AEO groups than in the control group. Immunoglobulin A, immunoglobulin G, and immunoglobulin M concentrations were higher in the AEOCO group (p < 0.05) than in the control group. The interleukin-6 concentration was lower in the AEOCO and AEO groups than in the control group (p < 0.05). The Chao 1 richness and ACE indices were higher in the AEOCO group than in the control group (p < 0.05). The ACO group had a significantly lower (p < 0.05) relative abundance of Firmicutes than the control group. The relative abundance of Bacteroidetes was the lowest in the control group, whereas that of Spirochaetota and Fibrobacteriota was the highest (p < 0.05). The relative abundance of Succiniclasticum was higher in the ACO and AEO groups (p < 0.05). These findings indicate that the combination of attapulgite, plant essential oils, and chitosan oligosaccharides has ameliorative effects on the growth performance, blood parameters, and rumen microbiome of calves.
Collapse
Affiliation(s)
| | | | | | - Zhaoyu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Ma Z, Jiang Q, Quan C, Liu L, Zhang Z, Xie J, Zhao L, Zhong Q, Yao G, Ma X. The first complete genome sequence and genetic evolution analysis of bovine norovirus in Xinjiang, China. J Vet Res 2024; 68:1-8. [PMID: 39224655 PMCID: PMC11368483 DOI: 10.2478/jvetres-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/25/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Viruses are among the main pathogens causing diarrhoea in calves. The current study found that bovine norovirus (BNoV) is one of the principal viruses causing diarrhoea in calves in Xinjiang, China. Material and Methods A total of 974 calf faecal samples from six regions in Xinjiang were tested for BNoV using reverse-transcriptase PCR. The genomic characteristics of BNoV and the genetic evolution of the VP1 gene, protein three-dimensional structure characteristics and amino acid variation were analysed using bioinformatics methods. Results Epidemiological survey results showed that the infection rate of BNoV was 19.82%, and all samples tested positive in five regions. The results of the genetic evolution analysis showed that BNoV strains from Tacheng of northern Xinjiang and Kashgar of southern Xinjiang both belonged to the GIII.2 genotype of BNoV but were not on the same cluster of evolutionary branches. Additionally, the amino acid variation of the VP1 protein was not observed to significantly affect its spatial structure. Conclusion This study is the first to report the genetic characteristics of the BNoV complete genome sequence in Xinjiang and provides a scientific basis for BNoV vaccine development and pathogenesis research.
Collapse
Affiliation(s)
- Zhigang Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Qian Jiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Chenxi Quan
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Zhonghua Zhang
- Xinjiang Daolang Sunshine Agriculture and Animal Husbandry Technology Co., Ltd., Kashgar Xinjiang, 844600, China
| | - Jinxing Xie
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Lu Zhao
- Changji Prefecture Center for Animal Disease Control and Prevention, Changji Xinjiang, 831100, China
| | - Qi Zhong
- Xinjiang Uygur Autonomous Region Animal Husbandry and Veterinary Society, Urumuqi Xinjiang, 830052China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| |
Collapse
|
8
|
Yan N, Yue H, Liu Q, Wang G, Tang C, Liao M. Isolation and Characteristics of a Novel Aichivirus D from Yak. Microbiol Spectr 2023; 11:e0009923. [PMID: 37097198 PMCID: PMC10269754 DOI: 10.1128/spectrum.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Aichivirus D (AiV-D) is a newly emerging Kobuvirus detected in bovine and sheep, and information is limited regarding its biological significance and prevalence. This study aimed to explore both the prevalence and characteristics of AiV-D in yaks. From May to August 2021, 117 fecal samples were collected from yaks with diarrhea in three provinces of China's Qinghai-Tibet Plateau, 15 of which were selected and pooled for metagenomic analysis. A high abundance of AiV-D sequences was obtained. Of the 117 diarrhea samples, 29 (24.8%) tested AiV-D-positive, including 33.3% (14/42) from Sichuan, 21.1% (8/38) from Qinghai, and 18.9% (7/37) from Tibet, respectively, suggesting a wide geographical distribution of the AiV-D in yaks in the Qinghai-Tibet Plateau. Furthermore, three AiV-D strains were successfully isolated using Vero cells. Significantly, the AiV-D strain could cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, duodenum, colon, cecum, and rectum. Based on phylogenetic analysis of the genome and capsid protein P1 (VP0, VP3, and VP1 genes), the yak AiV-D strains likely represent a novel genotype of AiV-D. On the whole, this study identified a novel genotype of AiV-D from yaks, which was successfully isolated, and confirmed that this virus is a diarrhea pathogen in yaks and has a wide geographical distribution in the Qinghai-Tibet Plateau. Our results expand the host range of AiV-D and the pathogen spectrum of yaks and have significant implications for diagnosing and controlling diarrhea in yaks. IMPORTANCE In this study, we identified and successfully isolated a novel genotype of AiV-D from yaks. Animal infection confirmed that this virus can cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, cecum, duodenum, colon, and rectum. All of these results have significant implications for diagnosing and controlling diarrhea in yaks. These novel AiV-D strains have a wide geographical distribution in yaks from the Qinghai-Tibet Plateau in China. In addition to expanding the host range of AiV-D and the pathogen spectrum of yaks, these findings can increase knowledge of the prevalence and diversity of AiV-D.
Collapse
Affiliation(s)
- Nan Yan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Hua Yue
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Field Observation and Experiment Station on Animal Blight of Guangdong Province, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Field Observation and Experiment Station on Animal Blight of Guangdong Province, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
9
|
Ji C, Zhang Y, Feng Y, Zhang X, Ma J, Pan Z, Kawaguchi A, Yao H. Systematic Surveillance of an Emerging Picornavirus among Cattle and Sheep in China. Microbiol Spectr 2023; 11:e0504022. [PMID: 37162348 PMCID: PMC10269770 DOI: 10.1128/spectrum.05040-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 05/11/2023] Open
Abstract
Emerging viruses are a constant threat to human and animal health. Boosepivirus is a novel picornavirus considered a gastrointestinal pathogen and has broken out in recent years. In 2020, we identified a strain of boosepivirus NX20-1 from Chinese calf feces and performed genetic characterization and evolutionary analysis. NX20-1 was closely related to the Japanese strain Bo-12-38/2009/JPN and belonged to Boosepivirus B. We found that 64 of 603 samples (10.6%) from 20 different provinces across the country were positive for boosepivirus by reverse transcription (RT)-PCR. Further, coinfection with other diarrheal pathogens was also present in 35 of these positive samples. Importantly, we found the prevalence of boosepivirus in sheep as well, indicating that Boosepivirus can infect different domestic animals. Our data suggest that boosepivirus is a potential diarrheal pathogen, but the pathogenicity and the mechanism of pathogenesis need further study. IMPORTANCE We identified a novel picornavirus, boosepivirus, for the first time in China. Genetic evolutionary analysis revealed that NX20-1 strain was closely related to the Japanese strain Bo-12-38/2009/JPN and belonged to Boosepivirus B. In addition, we found that the virus was prevalent in China with an overall positivity rate of 10.6% (64 of 603 samples), and there was significant coinfection with other pathogens. Importantly, we found the prevalence of boosepivirus in sheep as well, suggesting that boosepivirus has a risk of spillover and can be transmitted across species.
Collapse
Affiliation(s)
- Chengyuan Ji
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yao Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yiqiu Feng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinqin Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiale Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zihao Pan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Huochun Yao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Lei J, Miao Y, Guan Z, Chen H, Xiang C, Lu H, Fang Y, Han Y, Hu R, Lu K, Chang Z, Wang X, Zhang S, Liu H, Yang Z. A Porcine Epidemic Diarrhea Virus Isolated from a Sow Farm Vaccinated with CV777 Strain in Yinchuan, China: Characterization, Antigenicity, and Pathogenicity. Transbound Emerg Dis 2023; 2023:7082352. [PMID: 40303733 PMCID: PMC12016728 DOI: 10.1155/2023/7082352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 01/05/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a porcine enteric coronavirus globally, causing serious economic losses to the global pig industry since 2010. Here, a PEDV CH/Yinchuan/2021 strain was isolated in a CV777-vaccinated sow farm which experienced a large-scale PEDV invasion in Yinchuan, China, in 2021. Our results demonstrated that the CH/Yinchuan/2021 isolate could efficiently propagate in Vero cells, and its proliferation ability was weaker than that of CV777 at 10 passages (P10). Phylogenetic analysis of the S gene revealed that CH/Yinchuan/2021 was clustered into subgroup GIIa, forming an independent branch with 2020-2021 isolates in China. Moreover, GII was obviously allocated into four clades, showing regional and temporal differences in PEDV global isolates. Notably, CH/Yinchuan/2021 was analyzed as a recombinant originated from an American isolate and a Chinese isolate, with a big recombinant region spanning ORF1a and S1. Importantly, we found that CH/Yinchuan/2021 harbored multiple mutations relative to CV777 in neutralizing epitopes (S10, S1A, COE, and SS6). Homology modelling showed that these amino acid differences in S protein occur on the surface of its structure, especially the insertion and deletion of multiple consecutive residues at the S10 epitope. In addition, cross-neutralization analysis confirmed that the differences in the S protein of CH/Yinchuan/2021 changed its antigenicity compared with the CV777 strain, resulting in a different neutralization profile. Animal pathogenicity test showed that CH/Yinchuan/2021 caused PEDV-typified symptoms and 100% mortality in 3-day-old piglets. These data will provide valuable information to understand the epidemiology, molecular characteristics, evolution, and antigenicity of PEDV circulating in China.
Collapse
Affiliation(s)
- Jianlin Lei
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang, China
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Zhao Guan
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Hui Chen
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Chaohui Xiang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Hangqi Lu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Yuan Fang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Yu Han
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Zhengwu Chang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| |
Collapse
|
11
|
Abstract
Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.
Collapse
Affiliation(s)
- Oyewale Tomori
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria; ,
| | - Daniel O Oluwayelu
- Department of Veterinary Microbiology and Centre for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Oyo State, Nigeria; ,
| |
Collapse
|
12
|
Sun Y, Sun L, Sun S, Tu Z, Liu Y, Yi L, Tu C, He B. Virome Profiling of an Eastern Roe Deer Reveals Spillover of Viruses from Domestic Animals to Wildlife. Pathogens 2023; 12:pathogens12020156. [PMID: 36839428 PMCID: PMC9959412 DOI: 10.3390/pathogens12020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Eastern roe deer (Capreolus pygargus) is a small ruminant and is widespread across China. This creature plays an important role in our ecological system. Although a few studies have been conducted to investigate pathogens harbored by this species, our knowledge of the virus diversity is still very sparse. In this study, we conducted the whole virome profiling of a rescue-failed roe deer, which revealed a kobuvirus (KoV), a bocaparvovirus (BoV), and multiple circular single-stranded viruses. These viruses were mainly recovered from the rectum, but PCR detection showed systematic infection of the KoV. Particularly, the KoV and BoV exhibited closely genetic relationships with bovine and canine viruses, respectively, highly suggesting the spillover of viruses from domestic animals to wildlife. Although these viruses were unlikely to have been responsible for the death of the animal, they provide additional data to understand the virus spectrum harbored by roe deer. The transmission of viruses between domestic animals and wildlife highlights the need for extensive investigation of wildlife viruses.
Collapse
Affiliation(s)
- Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Lanshun Sun
- Provincial Wildlife Disease Monitoring Station of Shuanghe, Xunke 164400, China
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.T.); (B.H.)
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.T.); (B.H.)
| |
Collapse
|
13
|
Liu Z, Li L, Xu W, Yuan Y, Liang X, Zhang L, Wei Z, Sui L, Zhao Y, Cui Y, Yin Q, Li D, Li Q, Hou Z, Wei F, Liu Q, Wang Z. Extensive diversity of RNA viruses in ticks revealed by metagenomics in northeastern China. PLoS Negl Trop Dis 2022; 16:e0011017. [PMID: 36542659 PMCID: PMC9836300 DOI: 10.1371/journal.pntd.0011017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/12/2023] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ticks act as important vectors of infectious agents, and several emerging tick-borne viruses have recently been identified to be associated with human diseases in northeastern China. However, little is known about the tick virome in northeastern China. METHODS Ticks collected from April 2020 to July 2021 were pooled for metagenomic analysis to investigate the virome diversity in northeastern China. RESULTS In total, 22 RNA viruses were identified, including four each in the Nairoviridae and Phenuiviridae families, three each in the Flaviviridae, Rhabdoviridae, and Solemoviridae families, two in the Chuviridae family, and one each in the Partitiviridae, Tombusviridae families and an unclassified virus. Of these, eight viruses were of novel species, belonging to the Nairoviridae (Ji'an nairovirus and Yichun nairovirus), Phenuiviridae (Mudanjiang phlebovirus), Rhabdoviridae (Tahe rhabdovirus 1-3), Chuviridae (Yichun mivirus), and Tombusviridae (Yichun tombus-like virus) families, and five members were established human pathogens, including Alongshan virus, tick-borne encephalitis virus, Songling virus, Beiji nairovirus, and Nuomin virus. I. persulcatus ticks had significant higher number of viral species than H. japonica, H. concinna, and D. silvarum ticks. Significant differences in tick viromes were observed among Daxing'an, Xiaoxing'an and Changbai mountains. CONCLUSIONS These findings showed an extensive diversity of RNA viruses in ticks in northeastern China, revealing potential public health threats from the emerging tick-borne viruses. Further studies are needed to explain the natural circulation and pathogenicity of these viruses.
Collapse
Affiliation(s)
- Ziyan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Liang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Wenbo Xu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yongxu Yuan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Xiaojie Liang
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Li Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Zhengkai Wei
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People’s Republic of China
| | - Liyan Sui
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yinghua Zhao
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yanyan Cui
- College of Food Science and Engineering, Tonghua Normal University, Tonghua, Jilin Province, People’s Republic of China
| | - Qing Yin
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Dajun Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Feng Wei
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Quan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People’s Republic of China
| | - Zedong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
14
|
Altantogtokh D, Lilak AA, Takhampunya R, Sakolvaree J, Chanarat N, Matulis G, Poole-Smith BK, Boldbaatar B, Davidson S, Hertz J, Bolorchimeg B, Tsogbadrakh N, Fiorenzano JM, Lindroth EJ, von Fricken ME. Metagenomic profiles of Dermacentor tick pathogens from across Mongolia, using next generation sequencing. Front Microbiol 2022; 13:946631. [PMID: 36033893 PMCID: PMC9399792 DOI: 10.3389/fmicb.2022.946631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Tick-borne diseases are a major public health concern in Mongolia. Nomadic pastoralists, which make up ~ 26% of Mongolia’s population, are at an increased risk of both tick bite exposure and economic loss associated with clinical disease in herds. This study sought to further characterize tick-borne pathogens present in Dermacentor ticks (n = 1,773) sampled in 2019 from 15 of Mongolia’s 21 aimags (provinces). The ticks were morphologically identified and sorted into 377 pools which were then screened using Next-Generation Sequencing paired with confirmatory PCR and DNA sequence analysis. Rickettsia spp. were detected in 88.33% of pools, while Anaplasma spp. and Bartonella spp. were detected in 3.18 and 0.79% of pools, respectively. Khentii had the highest infection rate for Rickettsia spp. (76.61%; CI: 34.65–94.79%), while Arkhangai had the highest infection rate for Anaplasma spp. (7.79%; CI:4.04–13.72%). The exclusive detection of Anaplasma spp. in tick pools collected from livestock supports previous work in this area that suggests livestock play a significant role in disease maintenance. The detection of Anaplasma, Bartonella, and Rickettsia demonstrates a heightened risk for infection throughout Mongolia, with this study, to our knowledge, documenting the first detection of Bartonella melophagi in ticks collected in Mongolia. Further research deploying NGS methods is needed to characterize tick-borne pathogens in other endemic tick species found in Mongolia, including Hyalomma asiaticum and Ixodes persulcatus.
Collapse
Affiliation(s)
| | - Abigail A. Lilak
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
| | - Ratree Takhampunya
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Jira Sakolvaree
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Nitima Chanarat
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Graham Matulis
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
| | - Betty Katherine Poole-Smith
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Bazartseren Boldbaatar
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Silas Davidson
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
- Department of Chemistry and Life Science, US Military Academy, West Point, NY, United States
| | - Jeffrey Hertz
- Naval Medical Research Unit TWO (NAMRU-2), Sembawang, Singapore
| | | | | | | | - Erica J. Lindroth
- Department of Entomology, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Michael E. von Fricken
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
- *Correspondence: Michael E. von Fricken,
| |
Collapse
|
15
|
Virome Analysis for Identification of a Novel Porcine Sapelovirus Isolated in Western China. Microbiol Spectr 2022; 10:e0180122. [PMID: 35938790 PMCID: PMC9430179 DOI: 10.1128/spectrum.01801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diarrhea is one of the most important problems associated with the production of piglets, which have a wide range of possible pathogens. This study identified a strain of porcine sapelovirus (PSV) by using next-generation sequencing (NGS) technologies as the pathogen among fecal samples in a pig herd. Phylogenetic analysis showed that the PSV isolates shared a unique polyprotein and clustered with Chinese isolates identified before 2013. The PSV strain was then isolated and named GS01. The in vitro and in vivo biological characteristics of this virus were then described. Our pathogenicity investigation showed that GS01 could cause an inflammatory reaction and induce serious diarrhea in neonatal piglets. To our knowledge, this is the first isolation and characterization of PSV in western China. Our results demonstrate that the PSV GS01 strain is destructive to neonatal piglets and might show an expanded role for sapeloviruses. IMPORTANCE Porcine sapelovirus (PSV) infection leads to severe polioencephalomyelitis with high morbidity and mortality, resulting in significant economic losses. In previous studies, PSV infections were always subclinical or only involved a series of mild symptoms, including spinal cord damage, inappetence, diarrhea, and breathless. However, in our study, we isolated a novel PSV by virome analysis. We also determined the biological characteristics of this virus in vitro and in vivo. Our study showed that this novel PSV could cause an inflammatory response and induce serious diarrhea in neonatal piglets. To our knowledge, this is the first isolation and characterization of PSV in western China. These findings highlight the importance of prevention for the potential threats of PSV.
Collapse
|