1
|
Morita C, Wada M, Ohsaki E, Kimura-Ohba S, Ueda K. Generation of Replication-Competent Hepatitis B Virus Harboring Tagged Polymerase for Visualization and Quantification of the Infection. Microbiol Immunol 2025; 69:43-58. [PMID: 39620377 DOI: 10.1111/1348-0421.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025]
Abstract
Hepatitis B virus (HBV) infection is a serious global health problem causing acute and chronic hepatitis and related diseases. Approximately, 296 million patients have been chronically infected with the virus, leading to cirrhosis and hepatocellular carcinoma. Although HBV polymerase (HBVpol, pol) plays a pivotal role in HBV replication and must be a definite therapeutic target. The problems are that the detailed functions and intracellular dynamics of HBVpol remain unclear. Here, we constructed two kinds of tagged HBVpol, PA-tagged and HiBiT-tagged pol, and the HBV-producing vectors. Each PA tag and HiBiT tag were inserted into N-terminus of spacer region on HBVpol open reading frame. Transfection of the plasmids into HepG2 cells led to production of HBV. These tagged HBVpol were detectable in HBV replicating cells and pol-HiBiT enabled quantitative analysis. Furthermore, these recombinant HBV were infectious to primary human hepatocytes. Thus, we successfully designed infectious and replication-competent recombinant HBV harboring detectable tagged HBVpol. Such infectious recombinant HBV will provide a novel tool to study HBVpol dynamics and develop new therapeutics against HBV.
Collapse
Grants
- This research was supported by Grants from the Japan Agency for Medical Research and Development (AMED) Grants (16fk0310504h0005, 17fk0310105h0001, 18fk0310105h0002, 19fk0310105h0003, 20fk0310105h0004, 21fk0310105h005, 22fk0310505h0001, 23fk0310505h0002, and 24fk0310505h003) to K.U. and from JST SPRING, Grant Number JPMJSP2138, to C.M. and from the Osaka University Transdisciplinary Program for Biomedical Entrepreneurship and Innovation (WISE program) to C.M.
Collapse
Affiliation(s)
- Chiharu Morita
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masami Wada
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eriko Ohsaki
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
| | - Shihoko Kimura-Ohba
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
2
|
Hossain MG, Ueda K. Regulation of Hepatitis B Virus Replication by Modulating Endoplasmic Reticulum Stress (ER-Stress). Int J Microbiol 2024; 2024:9117453. [PMID: 39246409 PMCID: PMC11379510 DOI: 10.1155/2024/9117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Hepatitis B virus (HBV), resistant to several antiviral drugs due to viral genomic mutations, has been reported, which aggravates chronic infection and leads to hepatocellular carcinoma. Therefore, host cellular factors/signaling modulation might be an alternative way of treatment for drug-resistant HBV. Here, we investigated the viral protein expression, replication, and virion production using endoplasmic reticulum (ER) stress-modulating chemicals, tunicamycin (an ER-stress inducer), and salubrinal (an ER-stress inhibitor). We found that ER-stress could be induced by HBV replication in transfected HepG2 cells as well as by tunicamycin as demonstrated by dual luciferase assay. HBV intracellular core-associated DNA quantified by qPCR has been significantly increased by tunicamycin in transfected HepG2 cells. Inversely, intracellular core associated and extracellular particle DNA has been significantly decreased in a dose-dependent manner in salubrinal-treated HepG2 cells transfected with HBV-replicating plasmid pHBI. Similar results were found in stably HBV-expressing hepatoblastoma (HB611) cells treated with salubrinal. However, increased or decreased ER-stress by tunicamycin or salubrinal treatment, respectively, has been confirmed by expression analysis of grp78 using Western blot. In addition, Western blot results demonstrated that the expression of HBV core protein and large HBsAg is increased and decreased by tunicamycin and salubrinal, respectively. In conclusion, the sal-mediated inhibition of the HBV replication and virion production might be due to the simultaneous reduction of core and large HBsAg expression and maintaining the ER homeostasis. These results of HBV replication regulation by modulation of ER-stress dynamics would be useful for designing/identifying anti-HBV drugs targeting cellular signaling pathways.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Department of Microbiology and Hygiene Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Keiji Ueda
- Division of Virology Department of Microbiology and Immunology Graduate School of Medicine Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Hossain MG, Islam M, Jeba N, Hasan SMN, Akter M, Mou MJ, Paul SK, Akter S, Khan MK, Saha S, Ahmed MU, Debnath C, Sumon MAU, Salauddin M, Debnath CR. Complete genome sequence of hepatitis B virus identified from a patient suffering from chronic kidney disease in Bangladesh. Microbiol Resour Announc 2024; 13:e0115123. [PMID: 38624203 PMCID: PMC11080553 DOI: 10.1128/mra.01151-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatitis B virus (HBV) infection is reported as a risk factor for chronic kidney disease (CKD). In this study, we sequenced the complete genome of an HBV strain identified in a CKD patient in Bangladesh, followed by genomic characterization and mutational analyses.
Collapse
Affiliation(s)
- Md. Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahfuz Islam
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Nurejunnati Jeba
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - S. M. Nazmul Hasan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marjana Akter
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Moslema Jahan Mou
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shyamal Kumar Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | | | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muzahed Uddin Ahmed
- Department of Medicine, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Chirojit Debnath
- Department of Hepatology, Mymensingh Medical College, Mymensingh, Bangladesh
| | | | - Md. Salauddin
- Department of Microbiology and Public Health, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna, Bangladesh
| | | |
Collapse
|
4
|
Hossain MG, Islam M, Araf Y, Paul SK, Akter S, Khan MK, Ahmed MU, Khan S, Akbar SMF, Debnath CR. Comprehensive analysis of antigenic variations and genomic properties of hepatitis B virus in clinical samples in the mid-north east region of Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 119:105572. [PMID: 38367678 DOI: 10.1016/j.meegid.2024.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
This investigation delineates an exhaustive analysis of the clinical, immunological, and genomic landscapes of hepatitis B virus (HBV) infection across a cohort of 22 verified patients. The demographic analysis unveiled a pronounced male bias (77.27%), with patient ages spanning 20 to 85 years and durations of illness ranging from 10 days to 4 years. Predominant clinical manifestations included fever, fatigue, anorexia, abdominal discomfort, and arthralgia, alongside observed co-morbidities such as chronic renal disorders and hepatocellular carcinoma. Antigenic profiling of the HBV envelope proteins elucidated significant heterogeneity among the infected subjects, particularly highlighted by discordances in the detection capabilities of small and large HBsAg assays, suggesting antigenic diversity. Quantitative assessment of viral loads unveiled a broad spectrum, accompanied by atypical HBeAg reactivity patterns, challenging the reliability of existing serological markers. Correlative studies between viral burden and antigenicity of the envelope proteins unearthed phenomena indicative of diagnostic evasion. Notably, samples demonstrating robust viral replication were paradoxically undetectable by the large HBsAg ELISA kit, advocating for more sophisticated diagnostic methodologies. Genotypic examination of three HBV isolates classified them as genotype D (D2), with phylogenetic alignment to strains from various global origins. Mutational profiling identified pivotal mutations within the basic core promoter and preS2/S1 regions, associated with an augmented risk of hepatocellular carcinoma. Further, mutations discerned in the small HBsAg and RT/overlap regions were recognized as contributors to vaccine and/or diagnostic escape mechanisms. In summation, this scholarly discourse elucidates the intricate interplay of clinical presentations, antigenic diversity, and genomic attributes in HBV infection, accentuating the imperative for ongoing investigative endeavors to refine diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Mahfuz Islam
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Yusha Araf
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shyamal Kumar Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | | | - Muzahed Uddin Ahmed
- Department of Medicine, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sakirul Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Oita, Japan; Department of Microbiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Sheikh Mohammad Fazle Akbar
- Research Center for Global and Local Infectious Diseases, Oita University, Oita, Japan; Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan; Miyakawa Memorial Research Foundation, Tokyo, Japan
| | | |
Collapse
|
5
|
Sadiea RZ, Sultana S, Chaki BM, Islam T, Dash S, Akter S, Islam MS, Kazi T, Nagata A, Spagnuolo R, Mancina RM, Hossain MG. Phytomedicines to Target Hepatitis B Virus DNA Replication: Current Limitations and Future Approaches. Int J Mol Sci 2022; 23:ijms23031617. [PMID: 35163539 PMCID: PMC8836293 DOI: 10.3390/ijms23031617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatitis B virus infection (HBV) is one of the most common causes of hepatitis, and may lead to cirrhosis or hepatocellular carcinoma. According to the World Health Organization (WHO), approximately 296 million people worldwide are carriers of the hepatitis B virus. Various nucleos(t)ide analogs, which specifically suppress viral replication, are the main treatment agents for HBV infection. However, the development of drug-resistant HBV strains due to viral genomic mutations in genes encoding the polymerase protein is a major obstacle to HBV treatment. In addition, adverse effects can occur in patients treated with nucleos(t)ide analogs. Thus, alternative anti-HBV drugs of plant origin are being investigated as they exhibit excellent safety profiles and have few or no side effects. In this study, phytomedicines/phytochemicals exerting significant inhibitory effects on HBV by interfering with its replication were reviewed based on different compound groups. In addition, the chemical structures of these compounds were developed. This will facilitate their commercial synthesis and further investigation of the molecular mechanisms underlying their effects. The limitations of compounds previously screened for their anti-HBV effect, as well as future approaches to anti-HBV research, have also been discussed.
Collapse
Affiliation(s)
- Rahila Zannat Sadiea
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (R.Z.S.); (S.S.); (T.I.)
| | - Shahnaj Sultana
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (R.Z.S.); (S.S.); (T.I.)
| | - Bijan Mohon Chaki
- Department of Chemistry (Organic Chemistry Division), Begum Rokeya University, Rangpur 5400, Bangladesh;
| | - Tasnim Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (R.Z.S.); (S.S.); (T.I.)
| | - Sharmy Dash
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan;
| | - Taheruzzaman Kazi
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (T.K.); (A.N.)
| | - Abir Nagata
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (T.K.); (A.N.)
| | - Rocco Spagnuolo
- Experimental and Clinical Medicine Department, Magna Graecia University, 88100 Catanzaro, Italy;
| | | | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (R.Z.S.); (S.S.); (T.I.)
- Correspondence:
| |
Collapse
|