1
|
Myskiw J, Bailey-Elkin BA, Avery K, Barria MA, Ritchie DL, Cohen ML, Appleby BS, Booth SA. Characterization of variably protease-sensitive prionopathy by capillary electrophoresis. Sci Rep 2024; 14:27867. [PMID: 39537719 DOI: 10.1038/s41598-024-79217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Variably Protease Sensitive Prionopathy (VPSPr) is a rare human prion disease that, like Creutzfeldt-Jakob disease (CJD), results in the deposition of abnormally folded prion protein aggregates in the brain and is ultimately fatal. Neuropathology and clinical features of VPSPr are heterogeneous. However, the key discriminating feature is the relative sensitivity of the pathological prion protein to proteinase digestion compared to that typically seen in other human prion cases. Three major fragments of 23, 17 and 7 kDa are characteristic of the disease following digestion with proteinase K. We recently reported the utility of the highly adaptive and reproducible ProteinSimple™ capillary electrophoresis (CE) system to perform protein separation of PK digested prion protein in CJD. Consequently, we explored capillary-based electrophoresis (CE) technology as a sensitive method to detect and characterize VPSPr in a cohort of 29 cases. The unique 7 kDa fragment has high intensity, particularly in cases with the codon 129 VV genotype, but can be missed by regular Western blotting due to the small size. However, this fragment is readily detected by CE in all cases. In addition, the flexibility of CE produced highly reproducible, semi-quantitative data for determining relative proteinase K sensitivity and epitope mapping of representative cases from each codon 129 genotype (VV, MV and MM).
Collapse
Affiliation(s)
- Jennifer Myskiw
- Mycobacteriology, Vector-borne and Prion Diseases Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ben A Bailey-Elkin
- Mycobacteriology, Vector-borne and Prion Diseases Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Kristen Avery
- Mycobacteriology, Vector-borne and Prion Diseases Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Marcelo A Barria
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Diane L Ritchie
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark L Cohen
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Brian S Appleby
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie A Booth
- Mycobacteriology, Vector-borne and Prion Diseases Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Clemmensen FK, Areskeviciute A, Lund EL, Roos P. Variably protease-sensitive prionopathy with methionine homozygosity at codon 129 in the prion protein gene. BMJ Case Rep 2024; 17:e258199. [PMID: 38388201 PMCID: PMC10884235 DOI: 10.1136/bcr-2023-258199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Variably protease-sensitive prionopathy (VPSPr) is a recently characterised rare subtype of sporadic prion disease, mainly affecting individuals with valine homozygosity at codon 129 in the prion protein gene, with only seven methionine homozygote cases reported to date. This case presents clinical, neuropathological and biochemical features of the eighth VPSPr case worldwide with methionine homozygosity at codon 129 and compares the features with the formerly presented cases.The patient, a woman in her 70s, presented with cognitive decline, impaired balance and frequent falls. Medical history and clinical presentation were suggestive of a rapidly progressive dementia disorder. MRI showed bilateral thalamic hyperintensity. Cerebrospinal fluid real-time quaking-induced conversion was negative, and the electroencephalogram was unremarkable. The diagnosis was established through post-mortem pathological examinations. VPSPr should be suspected in rapidly progressive dementia lacking typical features or paraclinical results of protein misfolding diseases.
Collapse
Affiliation(s)
- Frederikke Kragh Clemmensen
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ausrine Areskeviciute
- Danish Reference Centre for Prion Disease, Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Eva Løbner Lund
- Danish Reference Centre for Prion Disease, Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Peter Roos
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Uchino A, Saito Y, Oonuma S, Murayama S, Yagishita S, Kitamoto T, Hasegawa K. An autopsy case of variably protease-sensitive prionopathy with Met/Met homogeneity at codon 129. Neuropathology 2023; 43:486-495. [PMID: 37253452 DOI: 10.1111/neup.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
The typical clinical manifestations of sporadic Creutzfeldt-Jakob disease (sCJD) are rapid-progressive dementia and myoclonus. However, the diagnosis of atypical sCJD can be challenging due to its wide phenotypic variations. We report an autopsy case of variably protease-sensitive prionopathy (VPSPr) with Met/Met homogeneity at codon 129. An 81-year-old woman presented with memory loss without motor symptoms. Seventeen months after the onset, her spontaneous language production almost disappeared. Diffusion-weighted images (DWI) showed hyperintensity in the cerebral cortex while electroencephalogram (EEG) showed nonspecific change. 14-3-3 protein and real-time qualing-induced conversion (RT-QuIC) of cerebrospinal fluid were negative. She died at age 85, 3.5 years after the onset. Pathological investigation revealed spongiform change, severe neuronal loss, and gliosis in the cerebral cortex. Mild to moderate neuronal loss and gliosis were observed in the basal ganglia. PrP immunostaining revealed plaque-like, dotlike, and synaptic structures in the cerebral cortex and small plaque-like structures in the molecular layer of the cerebellum. Analysis of PRNP showed no pathogenic mutations, and Western blot examination revealed the lack of a diglycosylated band consistent with VPSPr. The present case, which is the first report on a VPSPr case in Japan, supports previously published evidence that VPSPr cases can present variable and nonspecific clinical presentations. Because a small number of VPSPr cases can show typical magnetic resonance imaging (MRI) change in sCJD. We should investigate the possibility of VPSPr in a differential diagnosis with atypical dementia that presented DWIs of high intensity in the cortex, even though 14-3-3 proteins and RT-QuIC are both negative. In addition, VPSPr cases can take a longer clinical course compared to that of sCJD, and long-term follow-up is important.
Collapse
Affiliation(s)
- Akiko Uchino
- Department of Preventive Medical Center, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuko Saito
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Saori Oonuma
- Department of Neurology, NHO Sagamihara National Hospital, Sagamihara-shi, Japan
| | - Shigeo Murayama
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development & Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Neurology and Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | - Saburo Yagishita
- Department of Neurology, NHO Sagamihara National Hospital, Sagamihara-shi, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University School of Medicine, Sendai, Japan
| | - Kazuko Hasegawa
- Department of Neurology, NHO Sagamihara National Hospital, Sagamihara-shi, Japan
| |
Collapse
|
4
|
Nafe R, Arendt CT, Hattingen E. Human prion diseases and the prion protein - what is the current state of knowledge? Transl Neurosci 2023; 14:20220315. [PMID: 37854584 PMCID: PMC10579786 DOI: 10.1515/tnsci-2022-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Prion diseases and the prion protein are only partially understood so far in many aspects. This explains the continued research on this topic, calling for an overview on the current state of knowledge. The main objective of the present review article is to provide a comprehensive up-to-date presentation of all major features of human prion diseases bridging the gap between basic research and clinical aspects. Starting with the prion protein, current insights concerning its physiological functions and the process of pathological conversion will be highlighted. Diagnostic, molecular, and clinical aspects of all human prion diseases will be discussed, including information concerning rare diseases like prion-associated amyloidoses and Huntington disease-like 1, as well as the question about a potential human threat due to the transmission of prions from prion diseases of other species such as chronic wasting disease. Finally, recent attempts to develop future therapeutic strategies will be addressed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Christophe T. Arendt
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| |
Collapse
|
5
|
Poleggi A, Baiardi S, Ladogana A, Parchi P. The Use of Real-Time Quaking-Induced Conversion for the Diagnosis of Human Prion Diseases. Front Aging Neurosci 2022; 14:874734. [PMID: 35547619 PMCID: PMC9083464 DOI: 10.3389/fnagi.2022.874734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Prion diseases are rapidly progressive, invariably fatal, transmissible neurodegenerative disorders associated with the accumulation of the amyloidogenic form of the prion protein in the central nervous system (CNS). In humans, prion diseases are highly heterogeneous both clinically and neuropathologically. Prion diseases are challenging to diagnose as many other neurologic disorders share the same symptoms, especially at clinical onset. Definitive diagnosis requires brain autopsy to identify the accumulation of the pathological prion protein, which is the only specific disease biomarker. Although brain post-mortem investigation remains the gold standard for diagnosis, antemortem clinical, instrumental, and laboratory tests showing variable sensitivities and specificity, being surrogate disease biomarkers, have been progressively introduced in clinical practice to reach a diagnosis. More recently, the ultrasensitive Real-Time Quaking-Induced Conversion (RT-QuIC) assay, exploiting, for the first time, the detection of misfolded prion protein through an amplification strategy, has highly improved the “in-vitam” diagnostic process, reaching in cerebrospinal fluid (CSF) and olfactory mucosa (OM) around 96% sensitivity and close to 100% specificity. RT-QuIC also improved the detection of the pathologic prion protein in several peripheral tissues, possibly even before the clinical onset of the disease. The latter aspect is of great interest for the early and even preclinical diagnosis in subjects at genetic risk of developing the disease, who will likely be the main target population in future clinical trials. This review presents an overview of the current knowledge and future perspectives on using RT-QuIC to diagnose human prion diseases.
Collapse
Affiliation(s)
- Anna Poleggi
- Unit of Clinic, Diagnostics and Therapy of the Central Nervous System Diseases, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Baiardi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Programma Neuropatologia delle Malattie Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Anna Ladogana
- Unit of Clinic, Diagnostics and Therapy of the Central Nervous System Diseases, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Programma Neuropatologia delle Malattie Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Piero Parchi,
| |
Collapse
|