1
|
Evseev P, Gutnik D, Evpak A, Kasimova A, Miroshnikov K. Origin, Evolution and Diversity of φ29-like Phages-Review and Bioinformatic Analysis. Int J Mol Sci 2024; 25:10838. [PMID: 39409167 PMCID: PMC11476376 DOI: 10.3390/ijms251910838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Phage φ29 and related bacteriophages are currently the smallest known tailed viruses infecting various representatives of both Gram-positive and Gram-negative bacteria. They are characterised by genomic content features and distinctive properties that are unique among known tailed phages; their characteristics include protein primer-driven replication and a packaging process characteristic of this group. Searches conducted using public genomic databases revealed in excess of 2000 entries, including bacteriophages, phage plasmids and sequences identified as being archaeal that share the characteristic features of phage φ29. An analysis of predicted proteins, however, indicated that the metagenomic sequences attributed as archaeal appear to be misclassified and belong to bacteriophages. An analysis of the translated polypeptides of major capsid proteins (MCPs) of φ29-related phages indicated the dissimilarity of MCP sequences to those of almost all other known Caudoviricetes groups and a possible distant relationship to MCPs of T7-like (Autographiviridae) phages. Sequence searches conducted using HMM revealed the relatedness between the main structural proteins of φ29-like phages and an unusual lactococcal phage, KSY1 (Chopinvirus KSY1), whose genome contains two genes of RNA polymerase that are similar to the RNA polymerases of phages of the Autographiviridae and Schitoviridae (N4-like) families. An analysis of the tail tube proteins of φ29-like phages indicated their dissimilarity of the lower collar protein to tail proteins of all other viral groups, but revealed its possible distant relatedness with proteins of toxin translocation complexes. The combination of the unique features and distinctive origin of φ29-related phages suggests the categorisation of this vast group in a new order or as a new taxon of a higher rank.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Daria Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorsakaya Street, 3, 664033 Irkutsk, Russia
| | - Alena Evpak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Anastasia Kasimova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, 119991 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| |
Collapse
|
2
|
Evseev PV, Shneider MM, Kolupaeva LV, Kasimova AA, Timoshina OY, Perepelov AV, Shpirt AM, Shelenkov AA, Mikhailova YV, Suzina NE, Knirel YA, Miroshnikov KA, Popova AV. New Obolenskvirus Phages Brutus and Scipio: Biology, Evolution, and Phage-Host Interaction. Int J Mol Sci 2024; 25:2074. [PMID: 38396752 PMCID: PMC10888812 DOI: 10.3390/ijms25042074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Two novel virulent phages of the genus Obolenskvirus infecting Acinetobacter baumannii, a significant nosocomial pathogen, have been isolated and studied. Phages Brutus and Scipio were able to infect A. baumannii strains belonging to the K116 and K82 capsular types, respectively. The biological properties and genomic organization of the phages were characterized. Comparative genomic, phylogenetic, and pangenomic analyses were performed to investigate the relationship of Brutus and Scipio to other bacterial viruses and to trace the possible origin and evolutionary history of these phages and other representatives of the genus Obolenskvirus. The investigation of enzymatic activity of the tailspike depolymerase encoded in the genome of phage Scipio, the first reported virus infecting A. baumannii of the K82 capsular type, was performed. The study of new representatives of the genus Obolenskvirus and mechanisms of action of depolymerases encoded in their genomes expands knowledge about the diversity of viruses within this taxonomic group and strategies of Obolenskvirus-host bacteria interaction.
Collapse
Affiliation(s)
- Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.S.); (O.Y.T.); (K.A.M.)
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (L.V.K.); (A.A.K.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mikhail M. Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.S.); (O.Y.T.); (K.A.M.)
| | - Lyubov V. Kolupaeva
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (L.V.K.); (A.A.K.)
| | - Anastasia A. Kasimova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (L.V.K.); (A.A.K.)
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.P.); (A.M.S.); (Y.A.K.)
| | - Olga Y. Timoshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.S.); (O.Y.T.); (K.A.M.)
| | - Andrey V. Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.P.); (A.M.S.); (Y.A.K.)
| | - Anna M. Shpirt
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.P.); (A.M.S.); (Y.A.K.)
| | - Andrey A. Shelenkov
- Central Scientific Research Institute of Epidemiology, 111123 Moscow, Russia (Y.V.M.)
| | - Yulia V. Mikhailova
- Central Scientific Research Institute of Epidemiology, 111123 Moscow, Russia (Y.V.M.)
| | - Natalia E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, Moscow Region, 142290 Pushchino, Russia;
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.P.); (A.M.S.); (Y.A.K.)
| | - Konstantin A. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.S.); (O.Y.T.); (K.A.M.)
| | - Anastasia V. Popova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (L.V.K.); (A.A.K.)
| |
Collapse
|
3
|
Evseev PV, Tarakanov RI, Vo HTN, Suzina NE, Vasilyeva AA, Ignatov AN, Miroshnikov KA, Dzhalilov FSU. Characterisation of New Foxunavirus Phage Murka with the Potential of Xanthomonas campestris pv. campestris Control. Viruses 2024; 16:198. [PMID: 38399973 PMCID: PMC10892653 DOI: 10.3390/v16020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Phages of phytopathogenic bacteria are considered to be promising agents for the biological control of bacterial diseases in plants. This paper reports on the isolation and characterisation of a new Xanthomonas campestris pv. campestris phage, Murka. Phage morphology and basic kinetic characteristics of the infection were determined, and a phylogenomic analysis was performed. The phage was able to lyse a reasonably broad range (64%, 9 of the 14 of the Xanthomonas campestris pv. campestris strains used in the study) of circulating strains of the cabbage black rot pathogen. This lytic myovirus has a DNA genome of 44,044 bp and contains 83 predicted genes. Taxonomically, it belongs to the genus Foxunavirus. This bacteriophage is promising for use as a possible means of biological control of cabbage black rot.
Collapse
Affiliation(s)
- Peter V. Evseev
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
| | - Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
| | - Ha T. N. Vo
- Faculty of Agronomy, Nong Lam University, Quarter 6, Thu Duc District, Ho Chi Minh City 721400, Vietnam;
| | - Natalia E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki, 5, 142290 Pushchino, Russia;
| | - Anna A. Vasilyeva
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
| | - Alexander N. Ignatov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| | - Konstantin A. Miroshnikov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
| |
Collapse
|
4
|
Choe J, Kim B, Park MK, Roh E. Biological and Genetic Characterizations of a Novel Lytic ΦFifi106 against Indigenous Erwinia amylovora and Evaluation of the Control of Fire Blight in Apple Plants. BIOLOGY 2023; 12:1060. [PMID: 37626946 PMCID: PMC10452218 DOI: 10.3390/biology12081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Erwinia amylovora is a devastating phytobacterium causing fire blight in the Rosaceae family. In this study, ΦFifi106, isolated from pear orchard soil, was further purified and characterized, and its efficacy for the control of fire blight in apple plants was evaluated. Its genomic analysis revealed that it consisted of 84,405 bp and forty-six functional ORFs, without any genes encoding antibiotic resistance, virulence, and lysogenicity. The phage was classified into the genus Kolesnikvirus of the subfamily Ounavirinae. ΦFifi106 specifically infected indigenous E. amylovora and E. pyrifoliae. The lytic activity of ΦFifi106 was stable under temperature and pH ranges of 4-50 °C and 4-10, as well as the exposure to ultraviolet irradiation for 6 h. ΦFifi106 had a latent period of 20 min and a burst size of 310 ± 30 PFU/infected cell. ΦFifi106 efficiently inhibited E. amylovora YKB 14808 at a multiplicity of infection (MOI) of 0.1 for 16 h. Finally, the pretreatment of ΦFifi106 at an MOI of 1000 efficiently reduced disease incidence to 37.0% and disease severity to 0.4 in M9 apple plants. This study addressed the use of ΦFifi106 as a novel, safe, efficient, and effective alternative to control fire blight in apple plants.
Collapse
Affiliation(s)
- Jaein Choe
- School of Food Science and Biotechnology, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Byeori Kim
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| |
Collapse
|
5
|
Gabrielaitis D, Zitkute V, Saveikyte L, Labutyte G, Skapas M, Meskys R, Casaite V, Sasnauskiene A, Neniskyte U. Nanotubes from bacteriophage tail sheath proteins: internalisation by cancer cells and macrophages. NANOSCALE ADVANCES 2023; 5:3705-3716. [PMID: 37441259 PMCID: PMC10334369 DOI: 10.1039/d3na00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/04/2023] [Indexed: 07/15/2023]
Abstract
Bionanoparticles comprised of naturally occurring monomers are gaining interest in the development of novel drug transportation systems. Here we report on the stabilisation, cellular uptake, and macrophage clearance of nanotubes formed from the self-assembling gp053 tail sheath protein of the vB_EcoM_FV3 bacteriophage. To evaluate the potential of the bacteriophage protein-based nanotubes as therapeutic nanocarriers, we investigated their internalisation into colorectal cancer cell lines and professional macrophages that may hinder therapeutic applications by clearing nanotube carriers. We fused the bacteriophage protein with a SNAP-tag self-labelling enzyme and demonstrated that its activity is retained in assembled nanotubes, indicating that such carriers can be applied to deliver therapeutic biomolecules. Under physiological conditions, the stabilisation of the nanotubes by PEGylation was required to prevent aggregation and yield a stable solution with uniform nano-sized structures. Colorectal carcinoma cells from primary and metastatic tumours internalized SNAP-tag-carrying nanotubes with different efficiencies. The nanotubes entered HCT116 cells via dynamin-dependent and SW480 cells - via dynamin- and clathrin-dependent pathways and were accumulated in lysosomes. Meanwhile, peritoneal macrophages phagocytosed the nanotubes in a highly efficient manner through actin-dependent mechanisms. Macrophage clearance of nanotubes was enhanced by inflammatory activation but was dampened in macrophages isolated from aged animals. Altogether, our results demonstrate that gp053 nanotubes retained the cargo's enzymatic activity post-assembly and had the capacity to enter cancer cells. Furthermore, we emphasise the importance of evaluating the nanocarrier clearance by immune cells under conditions mimicking a cancerous environment.
Collapse
Affiliation(s)
- Dovydas Gabrielaitis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Vilmante Zitkute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Lina Saveikyte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Greta Labutyte
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Martynas Skapas
- Institute of Biotechnology, Vilnius University Vilnius Lithuania
| | - Rolandas Meskys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Vida Casaite
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Ausra Sasnauskiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Urte Neniskyte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
- VU-EMBL Partnership Institute, Vilnius University Vilnius Lithuania
| |
Collapse
|
6
|
Jin X, Sun X, Wang Z, Dou J, Lin Z, Lu Q, Zhang T, Wen G, Shao H, Cheng G, Luo Q. Virulent Phage vB_EfaS_WH1 Removes Enterococcus faecalis Biofilm and Inhibits Its Growth on the Surface of Chicken Meat. Viruses 2023; 15:v15051208. [PMID: 37243294 DOI: 10.3390/v15051208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Enterococcus faecalis is a potential animal and human pathogen. Improper use of antibiotics encourages resistance. Bacteriophages and their derivatives are promising for treating drug-resistant bacterial infections. In this study, phylogenetic and electron microscopy analyses of phage vB_EfaS_WH1 (WH1) isolated from chicken feces revealed it to be a novel phage in the family Siphoviridae. WH1 showed good pH stability (4-11), temperature tolerance (4-60 °C), and broad E. faecalis host range (60% of isolates). Genome sequencing revealed a 56,357 bp double-stranded DNA genome with a G+C content of 39.21%. WH1 effectively destroyed E. faecalis EF01 biofilms, even at low concentrations. When WH1 was applied at 1 × 105 to 1 × 109 PFU/g to chicken breast samples stored at 4 °C, surface growing E. faecalis were appreciably eradicated after 24 h. The phage WH1 showed good antibacterial activity, which could be used as a potential biocontrol agent to reduce the formation of E. faecalis biofilm, and could also be used as an alternative for the control of E. faecalis in chicken products.
Collapse
Affiliation(s)
- Xinxin Jin
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxiu Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zui Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Junfeng Dou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhengdan Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guofu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
7
|
Gutnik D, Evseev P, Miroshnikov K, Shneider M. Using AlphaFold Predictions in Viral Research. Curr Issues Mol Biol 2023; 45:3705-3732. [PMID: 37185764 PMCID: PMC10136805 DOI: 10.3390/cimb45040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Elucidation of the tertiary structure of proteins is an important task for biological and medical studies. AlphaFold, a modern deep-learning algorithm, enables the prediction of protein structure to a high level of accuracy. It has been applied in numerous studies in various areas of biology and medicine. Viruses are biological entities infecting eukaryotic and procaryotic organisms. They can pose a danger for humans and economically significant animals and plants, but they can also be useful for biological control, suppressing populations of pests and pathogens. AlphaFold can be used for studies of molecular mechanisms of viral infection to facilitate several activities, including drug design. Computational prediction and analysis of the structure of bacteriophage receptor-binding proteins can contribute to more efficient phage therapy. In addition, AlphaFold predictions can be used for the discovery of enzymes of bacteriophage origin that are able to degrade the cell wall of bacterial pathogens. The use of AlphaFold can assist fundamental viral research, including evolutionary studies. The ongoing development and improvement of AlphaFold can ensure that its contribution to the study of viral proteins will be significant in the future.
Collapse
Affiliation(s)
- Daria Gutnik
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., 664033 Irkutsk, Russia
| | - Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| |
Collapse
|
8
|
Evseev P, Lukianova A, Tarakanov R, Tokmakova A, Popova A, Kulikov E, Shneider M, Ignatov A, Miroshnikov K. Prophage-Derived Regions in Curtobacterium Genomes: Good Things, Small Packages. Int J Mol Sci 2023; 24:1586. [PMID: 36675099 PMCID: PMC9862828 DOI: 10.3390/ijms24021586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Curtobacterium is a genus of Gram-positive bacteria within the order Actinomycetales. Some Curtobacterium species (C. flaccumfaciens, C. plantarum) are harmful pathogens of agricultural crops such as soybean, dry beans, peas, sugar beet and beetroot, which occur throughout the world. Bacteriophages (bacterial viruses) are considered to be potential curative agents to control the spread of harmful bacteria. Temperate bacteriophages integrate their genomes into bacterial chromosomes (prophages), sometimes substantially influencing bacterial lifestyle and pathogenicity. About 200 publicly available genomes of Curtobacterium species, including environmental metagenomic sequences, were inspected for the presence of sequences of possible prophage origin using bioinformatic methods. The comparison of the search results with several ubiquitous bacterial groups showed the relatively low level of the presence of prophage traces in Curtobacterium genomes. Genomic and phylogenetic analyses were undertaken for the evaluation of the evolutionary and taxonomic positioning of predicted prophages. The analyses indicated the relatedness of Curtobacterium prophage-derived sequences with temperate actinophages of siphoviral morphology. In most cases, the predicted prophages can represent novel phage taxa not described previously. One of the predicted temperate phages was induced from the Curtobacterium genome. Bioinformatic analysis of the modelled proteins encoded in prophage-derived regions led to the discovery of some 100 putative glycopolymer-degrading enzymes that contained enzymatic domains with predicted cell-wall- and cell-envelope-degrading activity; these included glycosidases and peptidases. These proteins can be considered for the experimental design of new antibacterials against Curtobacterium phytopathogens.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Rashit Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
| | - Anastasia Popova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Eugene Kulikov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60-letia Oktyabrya, 7-2, 117312 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Alexander Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| |
Collapse
|
9
|
Evseev P, Gutnik D, Shneider M, Miroshnikov K. Use of an Integrated Approach Involving AlphaFold Predictions for the Evolutionary Taxonomy of Duplodnaviria Viruses. Biomolecules 2023; 13:biom13010110. [PMID: 36671495 PMCID: PMC9855967 DOI: 10.3390/biom13010110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The evaluation of the evolutionary relationships is exceptionally important for the taxonomy of viruses, which is a rapidly expanding area of research. The classification of viral groups belonging to the realm Duplodnaviria, which include tailed bacteriophages, head-tailed archaeal viruses and herpesviruses, has undergone many changes in recent years and continues to improve. One of the challenging tasks of Duplodnaviria taxonomy is the classification of high-ranked taxa, including families and orders. At the moment, only 17 of 50 families have been assigned to orders. The evaluation of the evolutionary relationships between viruses is complicated by the high level of divergence of viral proteins. However, the development of structure prediction algorithms, including the award-winning AlphaFold, encourages the use of the results of structural predictions to clarify the evolutionary history of viral proteins. In this study, the evolutionary relationships of two conserved viral proteins, the major capsid protein and terminase, representing different viruses, including all classified Duplodnaviria families, have been analysed using AlphaFold modelling. This analysis has been undertaken using structural comparisons and different phylogenetic methods. The results of the analyses mainly indicated the high quality of AlphaFold modelling and the possibility of using the AlphaFold predictions, together with other methods, for the reconstruction of the evolutionary relationships between distant viral groups. Based on the results of this integrated approach, assumptions have been made about refining the taxonomic classification of bacterial and archaeal Duplodnaviria groups, and problems relating to the taxonomic classification of Duplodnaviria have been discussed.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- Correspondence: (P.E.); (K.M.)
| | - Daria Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- Correspondence: (P.E.); (K.M.)
| |
Collapse
|