1
|
Matsuura R, Kawamura A, Matsumoto Y, Iida Y, Kanayama M, Kurokawa M, Aida Y. Epigallocatechin Gallate Stabilized by Cyclodextrin Inactivates Influenza Virus and Human Coronavirus 229E. Microorganisms 2022; 10:microorganisms10091796. [PMID: 36144398 PMCID: PMC9503507 DOI: 10.3390/microorganisms10091796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products are attractive antiviral agents because they are environment-friendly and mostly harmless. Epigallocatechin gallate (EGCg), a type of catechin, is a well-known natural antiviral agent that can inhibit various viruses. However, EGCg easily oxidizes and loses its physiological activity. Although this problem can be overcome by combining EGCg with cyclodextrin (CD-EGCg), which makes it stable in water at high concentrations, the antiviral effect of this compound remains unclear. Here, we show that in Madin–Darby canine kidney (MDCK) and MRC-5 cells, CD-EGCg is cytotoxic for 50% of cells at 85.61 and 65.34 ppm, respectively. Furthermore, CD-EGCg mainly shows its antiviral effect during the adsorption step for all four influenza virus strains (median effect concentration (EC50) was 0.93 to 2.78 ppm). Its antiviral effect post-adsorption is less intense, and no inhibitory effect is observed on influenza viruses pre-adsorption. Moreover, human coronavirus 229E (HCoV-229E) was inhibited at the adsorption step in short contact (EC50 = 2.5 ppm) and long contact conditions (EC50 = 0.5 ppm) by mixing CD-EGCg with HCoV-229E. These results suggest that CD-EGCg effectively inhibits various viruses that require an adsorption step, and is an effective tool for preventing infection.
Collapse
Affiliation(s)
- Ryosuke Matsuura
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Arisa Kawamura
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshiki Iida
- HPG Co., Ltd., 3-18-9 Hatchobori, Chuo-ku, Tokyo 104-00332, Japan
| | | | - Masahiko Kurokawa
- Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka, Miyazaki 882-8508, Japan
- Correspondence: (M.K.); (Y.A.)
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: (M.K.); (Y.A.)
| |
Collapse
|