1
|
Bermudez Y, Hatfield D, Muller M. A Balancing Act: The Viral-Host Battle over RNA Binding Proteins. Viruses 2024; 16:474. [PMID: 38543839 PMCID: PMC10974049 DOI: 10.3390/v16030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of a productive viral infection is the co-opting of host cell resources for viral replication. Despite the host repertoire of molecular functions and biological counter measures, viruses still subvert host defenses to take control of cellular factors such as RNA binding proteins (RBPs). RBPs are involved in virtually all steps of mRNA life, forming ribonucleoprotein complexes (mRNPs) in a highly ordered and regulated process to control RNA fate and stability in the cell. As such, the hallmark of the viral takeover of a cell is the reshaping of RNA fate to modulate host gene expression and evade immune responses by altering RBP interactions. Here, we provide an extensive review of work in this area, particularly on the duality of the formation of RNP complexes that can be either pro- or antiviral. Overall, in this review, we highlight the various ways viruses co-opt RBPs to regulate RNA stability and modulate the outcome of infection by gathering novel insights gained from research studies in this field.
Collapse
Affiliation(s)
| | | | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (Y.B.); (D.H.)
| |
Collapse
|
2
|
Wang X, Zhang AM. Functional features of a novel interferon-stimulated gene SHFL: a comprehensive review. Front Microbiol 2023; 14:1323231. [PMID: 38149274 PMCID: PMC10750386 DOI: 10.3389/fmicb.2023.1323231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Various interferon (IFN)-stimulated genes (ISGs), expressed via Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway-stimulated IFNs to increase antiviral effects or regulate immune response, perform different roles in virus-infected cells. In recent years, a novel ISG, SHFL, which is located in the genomic region 19p13.2 and comprises two isoforms, has been studied as a virus-inhibiting agent. Studies have shown that SHFL suppressive effects on human immunodeficiency virus-1 (HIV), Zika virus (ZIKV), dengue virus (DENV), hepatitis C virus (HCV), Japanese encephalitis virus (JEV), porcine epidemic diarrhea virus (PEDV), Human enterovirus A71 (EV-A71) and Kaposi's sarcoma-associated herpes virus (KSHV). SHFL interacts with various viral and host molecules to inhibit viral life circle and activities, such as replication, translation, and ribosomal frameshifting, or regulates host pathways to degrade viral proteins. In this review, we summarized the functional features of SHFL to provide insights to underlying mechanisms of the antiviral effects of SHFL and explored its potential function.
Collapse
Affiliation(s)
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Hatfield D, Rodriguez W, Mehrmann T, Muller M. The antiviral protein Shiftless blocks p-body formation during KSHV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567185. [PMID: 38014318 PMCID: PMC10680731 DOI: 10.1101/2023.11.16.567185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
P-bodies (PB) are non-membranous foci involved in determining mRNA fate by affecting translation and mRNA decay. In this study, we identify the anti-viral factor SHFL as a potent disassembly factor of PB. We show that PBs remain sparse in the presence of SHFL even in the context of oxidative stress, a major trigger for PB induction. Mutational approaches revealed that SHFL RNA binding activity is not required for its PB disassembly function. However, we have identified a new region of SHFL which bridges two distant domains as responsible for PB disassembly. Furthermore, we show that SHFL ability to disrupt PB formation is directly linked to its anti-viral activity during KSHV infection. While WT SHFL efficiently restricts KSHV lytic cycle, PB disruption defective mutants no longer lead to reactivation defects. SHFL-mediated PB disassembly also leads to increased expression of key anti-viral cytokines, further expanding SHFL dependent anti-viral state. Taken together, our observations suggest a role of SHFL in PB disassembly, which could have important anti-viral consequences during infection.
Collapse
|
4
|
Abstract
Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (∼1/100,000 codons). Programmed -1 ribosomal frameshifting (-1PRF) is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds of RNA viruses, which rely on -1PRF during genome translation to control the stoichiometry of viral proteins. While early investigations of -1PRF focused on virological and biochemical aspects, the application of X-ray crystallography and cryo-electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for -1PRF remains a useful way of thinking.
Collapse
Affiliation(s)
- Chris H Hill
- York Structural Biology Laboratory, York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom;
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
5
|
Tan C, Qin X, Tan Y, Dong X, Chen D, Liang L, Li J, Niu R, Cao K, He Z, Wei G, Huang M, Zhu X. SHFL inhibits enterovirus A71 infection by triggering degradation of viral 3D pol protein via the ubiquitin-proteasome pathway. J Med Virol 2023; 95:e29030. [PMID: 37565734 DOI: 10.1002/jmv.29030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Enterovirus A71 (EV-A71) is a highly contagious virus that poses a major threat to global health, representing the primary etiological agent for hand-foot and mouth disease (HFMD) and neurological complications. It has been established that interferon signaling is critical to establishing a robust antiviral state in host cells, mainly mediated through the antiviral effects of numerous interferon-stimulated genes (ISGs). The host restriction factor SHFL is a novel ISG with broad antiviral activity against various viruses through diverse underlying molecular mechanisms. Although SHFL is widely acknowledged for its broad-spectrum antiviral activity, it remains elusive whether SHFL inhibits EV-A71. In this work, we validated that EV-A71 triggers the upregulation of SHFL both in cell lines and in a mouse model. Knockdown and overexpression of SHFL in EVA71-infected cells suggested that this factor could markedly suppress EV-A71 replication. Our findings further revealed an intriguing mechanism of SHFL that it could interact with the nonstructural proteins 3Dpol of EV-A71 and promoted the degradation of 3Dpol through the ubiquitin-proteasome pathway. Furthermore, the zinc-finger domain and the 36 amino acids (164-199) of SHFL were crucial to the interaction between SHFL and EV-A71 3Dpol . Overall, these findings broadened our understanding of the pivotal roles of SHFL in the interaction between the host and EV-A71.
Collapse
Affiliation(s)
- Chahui Tan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
- Department of Laboratory Medicine, Changsha Medical University, Changsha, China
| | - Xingliang Qin
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Yongyao Tan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Xinhuai Dong
- Shunde Hospital, Medical Research Center, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Delin Chen
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Linyue Liang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Jinling Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Ruoxi Niu
- Department of Clinical Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Kaiyuan Cao
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
| | - Zhenjian He
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guohong Wei
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingxing Huang
- Central Laboratory, The Third People's Hospital of Zhuhai, Zhuhai, China
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Research Center for Clinical Laboratory Standard, Sun Yat-sen University, Guangzhou, China
- Central Laboratory, The Third People's Hospital of Zhuhai, Zhuhai, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| |
Collapse
|
6
|
Rodriguez W, Mehrmann T, Hatfield D, Muller M. Shiftless Restricts Viral Gene Expression and Influences RNA Granule Formation during Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. J Virol 2022; 96:e0146922. [PMID: 36326276 PMCID: PMC9682979 DOI: 10.1128/jvi.01469-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Herpesviral infection reflects thousands of years of coevolution and the constant struggle between virus and host for control of cellular gene expression. During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication, the virus rapidly seizes control of host gene expression machinery by triggering a massive RNA decay event via a virally encoded endoribonuclease, SOX. This virus takeover strategy decimates close to 80% of cellular transcripts, reallocating host resources toward viral replication. The host cell, however, is not entirely passive in this assault on RNA stability. A small pool of host transcripts that actively evade SOX cleavage has been identified over the years. One such "escapee," C19ORF66 (herein referred to as Shiftless [SHFL]), encodes a potent antiviral protein capable of restricting the replication of multiple DNA and RNA viruses and retroviruses, including KSHV. Here, we show that SHFL restricts KSHV replication by targeting the expression of critical viral early genes, including the master transactivator protein, KSHV ORF50, and thus subsequently the entire lytic gene cascade. Consistent with previous reports, we found that the SHFL interactome throughout KSHV infection is dominated by RNA-binding proteins that influence both translation and protein stability, including the viral protein ORF57, a crucial regulator of viral RNA fate. We next show that SHFL affects cytoplasmic RNA granule formation, triggering the disassembly of processing bodies. Taken together, our findings provide insights into the complex relationship between RNA stability, RNA granule formation, and the antiviral response to KSHV infection. IMPORTANCE In the past 5 years, SHFL has emerged as a novel and integral piece of the innate immune response to viral infection. SHFL has been reported to restrict the replication of multiple viruses, including several flaviviruses and the retrovirus HIV-1. However, to date, the mechanism(s) by which SHFL restricts DNA virus infection remains largely unknown. We have previously shown that following its escape from KSHV-induced RNA decay, SHFL acts as a potent antiviral factor, restricting nearly every stage of KSHV lytic replication. In this study, we set out to determine the mechanism by which SHFL restricts KSHV infection. We demonstrate that SHFL impacts all classes of KSHV genes and found that SHFL restricts the expression of several key early genes, including KSHV ORF50 and ORF57. We then mapped the interactome of SHFL during KSHV infection and found several host and viral RNA-binding proteins that all play crucial roles in regulating RNA stability and translation. Lastly, we found that SHFL expression influences RNA granule formation both outside and within the context of KSHV infection, highlighting its broader impact on global gene expression. Collectively, our findings highlight a novel relationship between a critical piece of the antiviral response to KSHV infection and the regulation of RNA-protein dynamics.
Collapse
Affiliation(s)
- William Rodriguez
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Timothy Mehrmann
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - David Hatfield
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
7
|
Suzuki Y, Murakawa T. Restriction of Flaviviruses by an Interferon-Stimulated Gene SHFL/C19orf66. Int J Mol Sci 2022; 23:12619. [PMID: 36293480 PMCID: PMC9604422 DOI: 10.3390/ijms232012619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Flaviviruses (the genus Flavivirus of the Flaviviridae family) include many arthropod-borne viruses, often causing life-threatening diseases in humans, such as hemorrhaging and encephalitis. Although the flaviviruses have a significant clinical impact, it has become apparent that flavivirus replication is restricted by cellular factors induced by the interferon (IFN) response, which are called IFN-stimulated genes (ISGs). SHFL (shiftless antiviral inhibitor of ribosomal frameshifting) is a novel ISG that inhibits dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) infections. Interestingly, SHFL functions as a broad-spectrum antiviral factor exhibiting suppressive activity against various types of RNA and DNA viruses. In this review, we summarize the current understanding of the molecular mechanisms by which SHFL inhibits flavivirus infection and discuss the molecular basis of the inhibitory mechanism using a predicted tertiary structure of SHFL generated by the program AlphaFold2.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan
| | - Takeshi Murakawa
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan
| |
Collapse
|