1
|
Behnam MAM, Klein CD. Alternate recognition by dengue protease: Proteolytic and binding assays provide functional evidence beyond an induced-fit. Biochimie 2024; 227:15-27. [PMID: 38871044 DOI: 10.1016/j.biochi.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Proteases are key enzymes in viral replication, and interfering with these targets is the basis for therapeutic interventions. We previously introduced a hypothesis about conformational selection in the protease of dengue virus and related flaviviruses, based on conformational plasticity noted in X-ray structures. The present work presents the first functional evidence for alternate recognition by the dengue protease, in a mechanism based primarily on conformational selection rather than induced-fit. Recognition of distinct substrates and inhibitors in proteolytic and binding assays varies to a different extent, depending on factors reported to influence the protease structure. The pH, salinity, buffer type, and temperature cause a change in binding, proteolysis, or inhibition behavior. Using representative inhibitors with distinct structural scaffolds, we identify two contrasting binding profiles to dengue protease. Noticeable effects are observed in the binding assay upon inclusion of a non-ionic detergent in comparison to the proteolytic assay. The findings highlight the impact of the selection of testing conditions on the observed ligand affinity or inhibitory potency. From a broader scope, the dengue protease presents an example, where the induced-fit paradigm appears insufficient to explain binding events with the biological target. Furthermore, this protein reveals the complexity of comparing or combining biochemical assay data obtained under different conditions. This can be particularly critical for artificial intelligence (AI) approaches in drug discovery that rely on large datasets of compounds activity, compiled from different sources using non-identical testing procedures. In such cases, mismatched results will compromise the model quality and its predictive power.
Collapse
Affiliation(s)
- Mira A M Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Agback T, Lesovoy D, Han X, Lomzov A, Sun R, Sandalova T, Orekhov VY, Achour A, Agback P. Combined NMR and molecular dynamics conformational filter identifies unambiguously dynamic ensembles of Dengue protease NS2B/NS3pro. Commun Biol 2023; 6:1193. [PMID: 38001280 PMCID: PMC10673835 DOI: 10.1038/s42003-023-05584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The dengue protease NS2B/NS3pro has been reported to adopt either an 'open' or a 'closed' conformation. We have developed a conformational filter that combines NMR with MD simulations to identify conformational ensembles that dominate in solution. Experimental values derived from relaxation parameters for the backbone and methyl side chains were compared with the corresponding back-calculated relaxation parameters of different conformational ensembles obtained from free MD simulations. Our results demonstrate a high prevalence for the 'closed' conformational ensemble while the 'open' conformation is absent, indicating that the latter conformation is most probably due to crystal contacts. Conversely, conformational ensembles in which the positioning of the co-factor NS2B results in a 'partially' open conformation, previously described in both MD simulations and X-ray studies, were identified by our conformational filter. Altogether, we believe that our approach allows for unambiguous identification of true conformational ensembles, an essential step for reliable drug discovery.
Collapse
Affiliation(s)
- Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| | - Dmitry Lesovoy
- Department of Structural Biology, Shemyakin-Ovchinnikov, Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Alexander Lomzov
- Laboratory of Structural Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090, Novosibirsk, Russia
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Vladislav Yu Orekhov
- Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
3
|
Yu L, Xu X, Chua WZ, Feng H, Ser Z, Shao K, Shi J, Wang Y, Li Z, Sobota RM, Sham LT, Luo M. Structural basis of peptide secretion for Quorum sensing by ComA. Nat Commun 2023; 14:7178. [PMID: 37935699 PMCID: PMC10630487 DOI: 10.1038/s41467-023-42852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Quorum sensing (QS) is a crucial regulatory mechanism controlling bacterial signalling and holds promise for novel therapies against antimicrobial resistance. In Gram-positive bacteria, such as Streptococcus pneumoniae, ComA is a conserved efflux pump responsible for the maturation and secretion of peptide signals, including the competence-stimulating peptide (CSP), yet its structure and function remain unclear. Here, we functionally characterize ComA as an ABC transporter with high ATP affinity and determined its cryo-EM structures in the presence or absence of CSP or nucleotides. Our findings reveal a network of strong electrostatic interactions unique to ComA at the intracellular gate, a putative binding pocket for two CSP molecules, and negatively charged residues facilitating CSP translocation. Mutations of these residues affect ComA's peptidase activity in-vitro and prevent CSP export in-vivo. We demonstrate that ATP-Mg2+ triggers the outward-facing conformation of ComA for CSP release, rather than ATP alone. Our study provides molecular insights into the QS signal peptide secretion, highlighting potential targets for QS-targeting drugs.
Collapse
Affiliation(s)
- Lin Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Wan-Zhen Chua
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Hao Feng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Kai Shao
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Yumei Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Zongli Li
- Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
4
|
Pianka J, Gruba N, Lesner A. Novel tools to study West Nile virus NS3 protease activity. Bioorg Chem 2023; 133:106426. [PMID: 36801793 DOI: 10.1016/j.bioorg.2023.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
West Nile Virus (WNV) belongs to a group of pathogenic viruses called flaviviruses. West Nile virus infection can be mild, causing so-called West Nile Fever (WNF) or severe neuroinvasive form of the disease (WNND), and ultimately even death. There are currently no known medications to prevent West Nile virus infection. Only symptomatic treatment is used. To date, there are no unequivocal tests enabling a quick and unambiguous assessment of WN virus infection. The aim of the research was to obtain specific and selective tools for determining the activity of the West Nile virus serine proteinase. Using the methods of combinatorial chemistry with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. The FRET ABZ-Ala-Lys-Gln-Arg-Gly-Gly-Thr-Tyr(3-NO2)-NH2 substrate was obtained, characterized by kinetic parameters (KM = 4.20 ± 0.32 × 10-5 M) as for the majority of proteolytic enzymes. The obtained sequence was used to develop and synthesize highly sensitive functionalized quantum dot-based protease probes (QD). A QD WNV NS3 protease probe was obtained to detect an increase in fluorescence of 0.05 nmol enzyme in the assay system. This value was at least 20 times lower than that observed with the optimized substrate. The obtained result may be the basis for further research on the potential use of the WNV NS3 protease in the diagnosis of West Nile virus infection.
Collapse
Affiliation(s)
- Joanna Pianka
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| | - Natalia Gruba
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland.
| | - Adam Lesner
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| |
Collapse
|
5
|
Droździk M, Lapczuk-Romanska J, Wenzel C, Skalski Ł, Szeląg-Pieniek S, Post M, Syczewska M, Kurzawski M, Oswald S. Protein Abundance of Drug Transporters in Human Hepatitis C Livers. Int J Mol Sci 2022; 23:7947. [PMID: 35887291 PMCID: PMC9317752 DOI: 10.3390/ijms23147947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Transmembrane drug transport in hepatocytes is one of the major determinants of drug pharmacokinetics. In the present study, ABC transporters (P-gp, MRP1, MRP2, MRP3, MRP4, BCRP, and BSEP) and SLC transporters (MCT1, NTCP, OAT2, OATP1B1, OATP1B3, OATP2B1, OCT1, and OCT3) were quantified for protein abundance (LC-MS/MS) and mRNA levels (qRT-PCR) in hepatitis C virus (HCV)-infected liver samples from the Child-Pugh class A (n = 30), B (n = 21), and C (n = 7) patients. Protein levels of BSEP, MRP3, MCT1, OAT2, OATP1B3, and OCT3 were not significantly affected by HCV infection. P-gp, MRP1, BCRP, and OATP1B3 protein abundances were upregulated, whereas those of MRP2, MRP4, NTCP, OATP2B1, and OCT1 were downregulated in all HCV samples. The observed changes started to be seen in the Child-Pugh class A livers, i.e., upregulation of P-gp and MRP1 and downregulation of MRP2, MRP4, BCRP, and OATP1B3. In the case of NTCP, OATP2B1, and OCT1, a decrease in the protein levels was observed in the class B livers. In the class C livers, no other changes were noted than those in the class A and B patients. The results of the study demonstrate that drug transporter protein abundances are affected by the functional state of the liver in hepatitis C patients.
Collapse
Affiliation(s)
- Marek Droździk
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland; (J.L.-R.); (Ł.S.); (S.S.-P.); (M.K.)
| | - Joanna Lapczuk-Romanska
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland; (J.L.-R.); (Ł.S.); (S.S.-P.); (M.K.)
| | - Christoph Wenzel
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, 17489 Greifswald, Germany;
| | - Łukasz Skalski
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland; (J.L.-R.); (Ł.S.); (S.S.-P.); (M.K.)
| | - Sylwia Szeląg-Pieniek
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland; (J.L.-R.); (Ł.S.); (S.S.-P.); (M.K.)
| | - Mariola Post
- Department of General and Transplantation Surgery, County Hospital, 71-455 Szczecin, Poland;
| | - Marta Syczewska
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University, Arkonska 4, 71-455 Szczecin, Poland;
| | - Mateusz Kurzawski
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland; (J.L.-R.); (Ł.S.); (S.S.-P.); (M.K.)
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18051 Rostock, Germany;
| |
Collapse
|