1
|
Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2024:1-21. [PMID: 38634723 DOI: 10.1080/1040841x.2024.2344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is infected with the virus, which establishes latency within lymphocytes. EBV is also known to cause infectious mononucleosis, a self-limited flu-like illness, in adolescents. EBV is often reactivated and it employs several mechanisms of evading the host immune system. It has also been implicated in inducing host immune dysfunction potentially resulting in exacerbation or triggering of inflammatory processes. EBV has therefore been linked to a number of autoimmune diseases, including systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. The review examines the molecular mechanisms through which the virus alters host immune system components thus possibly resulting in autoimmune processes. Understanding the mechanisms underpinning EBV-associated autoimmunity is pivotal; however, the precise causal pathways remain elusive. Research on therapeutic agents and vaccines for EBV has been stagnant for a long number of years until recent advances shed light on potential therapeutic targets. The implications of EBV in autoimmunity underscore the importance of developing targeted therapeutic strategies and, potentially, vaccines to mitigate the autoimmune burden associated with this ubiquitous virus.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elio R Bitar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Aya Hanna
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Georges Naim
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Fu TC, Lin JR, Chang CM. Association Between Herpes Simplex Virus II Infection and Rheumatoid Arthritis in US Adults: A Population-Based Propensity Score-Matching Study. J Clin Rheumatol 2024; 30:12-17. [PMID: 37946328 DOI: 10.1097/rhu.0000000000002044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND/OBJECTIVE The potential correlation between herpes simplex virus (HSV) and human papillomavirus (HPV) infections and rheumatoid arthritis (RA) has not been definitively established. Further research is needed to determine the relationship between the development of RA and the presence of these viral infections. METHODS A case-control study was conducted with data from the National Health and Nutrition Examination Survey between 2009 and 2014. Our analysis examined the association between HSV I, HSV II, HPV oral polymerase chain reaction (PCR), HPV vaginal PCR, and RA. We identified adults aged 20 to 49 years with a primary diagnosis of RA using the National Health and Nutrition Examination Survey database codes (MCQ191 = 1 [years 2009-2010]; MCQ195 = 2 [years 2011-2014]) and excluded patients with incomplete data on key variables and primary outcomes. RESULTS The study included 8620 patients, with 150 patients diagnosed with RA and 1500 patients without RA. Patients with RA had a significantly higher prevalence of HSV II infection compared with those without RA (36.34% vs. 24.72%, p = 0.015) after propensity score matching. No significant differences were observed for HSV I, HPV oral PCR, and HPV vaginal PCR between the 2 groups. Patients with RA were older; were more likely to be female, obese, and non-Hispanic White; and had a higher prevalence of comorbidities than those without RA. CONCLUSIONS This population-based propensity score-matching study provides evidence of an association between HSV II infection and RA in US adults. Further research is needed to fully elucidate the relationship between viral infections and RA, with the aim of developing effective risk reduction strategies and innovative treatments for RA.
Collapse
Affiliation(s)
| | - Jr-Rung Lin
- Clinical Informatics and Medical Statistics Research Center, Graduate Institute of Clinical Medical (Joint Appointment), Chang Gung University, Taoyuan
| | | |
Collapse
|
3
|
Brooks WH. Polyamine Dysregulation and Nucleolar Disruption in Alzheimer's Disease. J Alzheimers Dis 2024; 98:837-857. [PMID: 38489184 DOI: 10.3233/jad-231184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A hypothesis of Alzheimer's disease etiology is proposed describing how cellular stress induces excessive polyamine synthesis and recycling which can disrupt nucleoli. Polyamines are essential in nucleolar functions, such as RNA folding and ribonucleoprotein assembly. Changes in the nucleolar pool of anionic RNA and cationic polyamines acting as counterions can cause significant nucleolar dynamics. Polyamine synthesis reduces S-adenosylmethionine which, at low levels, triggers tau phosphorylation. Also, polyamine recycling reduces acetyl-CoA needed for acetylcholine, which is low in Alzheimer's disease. Extraordinary nucleolar expansion and/or contraction can disrupt epigenetic control in peri-nucleolar chromatin, such as chromosome 14 with the presenilin-1 gene; chromosome 21 with the amyloid precursor protein gene; chromosome 17 with the tau gene; chromosome 19 with the APOE4 gene; and the inactive X chromosome (Xi; aka "nucleolar satellite") with normally silent spermine synthase (polyamine synthesis) and spermidine/spermine-N1-acetyltransferase (polyamine recycling) alleles. Chromosomes 17, 19 and the Xi have high concentrations of Alu elements which can be transcribed by RNA polymerase III if positioned nucleosomes are displaced from the Alu elements. A sudden flood of Alu RNA transcripts can competitively bind nucleolin which is usually bound to Alu sequences in structural RNAs that stabilize the nucleolar heterochromatic shell. This Alu competition leads to loss of nucleolar integrity with leaking of nucleolar polyamines that cause aggregation of phosphorylated tau. The hypothesis was developed with key word searches (e.g., PubMed) using relevant terms (e.g., Alzheimer's, lupus, nucleolin) based on a systems biology approach and exploring autoimmune disease tautology, gaining synergistic insights from other diseases.
Collapse
|
4
|
Parolini C. The Role of Marine n-3 Polyunsaturated Fatty Acids in Inflammatory-Based Disease: The Case of Rheumatoid Arthritis. Mar Drugs 2023; 22:17. [PMID: 38248642 PMCID: PMC10817514 DOI: 10.3390/md22010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a conserved process that involves the activation of immune and non-immune cells aimed at protecting the host from bacteria, viruses, toxins and injury. However, unresolved inflammation and the permanent release of pro-inflammatory mediators are responsible for the promotion of a condition called "low-grade systemic chronic inflammation", which is characterized by tissue and organ damage, metabolic changes and an increased susceptibility to non-communicable diseases. Several studies have demonstrated that different dietary components may influence modifiable risk factors for diverse chronic human pathologies. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are well-recognized anti-inflammatory and immunomodulatory agents that are able to influence many aspects of the inflammatory process. The aim of this article is to review the recent literature that relates to the modulation of human disease, such as rheumatoid arthritis, by n-3 PUFAs.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
5
|
Karachaliou CE, Livaniou E. Immunosensors for Autoimmune-Disease-Related Biomarkers: A Literature Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6770. [PMID: 37571553 PMCID: PMC10422610 DOI: 10.3390/s23156770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Immunosensors are a special class of biosensors that employ specific antibodies for biorecognition of the target analyte. Immunosensors that target disease biomarkers may be exploited as tools for disease diagnosis and/or follow-up, offering several advantages over conventional analytical techniques, such as rapid and easy analysis of patients' samples at the point-of-care. Autoimmune diseases have been increasingly prevalent worldwide in recent years, while the COVID-19 pandemic has also been associated with autoimmunity. Consequently, demand for tools enabling the early and reliable diagnosis of autoimmune diseases is expected to increase in the near future. To this end, interest in immunosensors targeting autoimmune disease biomarkers, mainly, various autoantibodies and specific pro-inflammatory proteins (e.g., specific cytokines), has been rekindled. This review article presents most of the immunosensors proposed to date as potential tools for the diagnosis of various autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, and multiple sclerosis. The signal transduction and the immunoassay principles of each immunosensor have been suitably classified and are briefly presented along with certain sensor elements, e.g., special nano-sized materials used in the construction of the immunosensing surface. The main concluding remarks are presented and future perspectives of the field are also briefly discussed.
Collapse
Affiliation(s)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece;
| |
Collapse
|
6
|
Lupo J, Truffot A, Andreani J, Habib M, Epaulard O, Morand P, Germi R. Virological Markers in Epstein–Barr Virus-Associated Diseases. Viruses 2023; 15:v15030656. [PMID: 36992365 PMCID: PMC10051789 DOI: 10.3390/v15030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Epstein–Barr virus (EBV) is an oncogenic virus infecting more than 95% of the world’s population. After primary infection—responsible for infectious mononucleosis in young adults—the virus persists lifelong in the infected host, especially in memory B cells. Viral persistence is usually without clinical consequences, although it can lead to EBV-associated cancers such as lymphoma or carcinoma. Recent reports also suggest a link between EBV infection and multiple sclerosis. In the absence of vaccines, research efforts have focused on virological markers applicable in clinical practice for the management of patients with EBV-associated diseases. Nasopharyngeal carcinoma is an EBV-associated malignancy for which serological and molecular markers are widely used in clinical practice. Measuring blood EBV DNA load is additionally, useful for preventing lymphoproliferative disorders in transplant patients, with this marker also being explored in various other EBV-associated lymphomas. New technologies based on next-generation sequencing offer the opportunity to explore other biomarkers such as the EBV DNA methylome, strain diversity, or viral miRNA. Here, we review the clinical utility of different virological markers in EBV-associated diseases. Indeed, evaluating existing or new markers in EBV-associated malignancies or immune-mediated inflammatory diseases triggered by EBV infection continues to be a challenge.
Collapse
Affiliation(s)
- Julien Lupo
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
- Correspondence:
| | - Aurélie Truffot
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Julien Andreani
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Mohammed Habib
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Olivier Epaulard
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Service de Maladies Infectieuses, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Patrice Morand
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Raphaële Germi
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| |
Collapse
|
7
|
Nakamura H, Takei M. Special Issue 'Viral Infection and Autoimmune Diseases'. Viruses 2022; 14:v14112491. [PMID: 36423100 PMCID: PMC9697504 DOI: 10.3390/v14112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Viral infection, which is one of the environmental factors, and human autoimmune diseases are often associated with each other [...].
Collapse
|